
The essential difference between the coherent superposi-
tion and the incoherent one regards the positions of the field
maxima and zeroes. In the coherent case, maxima and zeroes
form a stationary fringe pattern: in the incoherent case, they
form an instantaneous pattern that oscillates randomly along
the y axis. On one side, this random motion prevents the
fringes from being seen: on the other side, it does not destroy
the equality of the phases at A and B, which is responsible
for the birth of the fringes in the far field.
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laser (see Sec. I I  B) contains two lines corresponding to a longitudinal
mode spacing of 320 MHz, Eq. (3) should contain a beating factor which,
however, does not impair fringe visibility.
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A new approach to thermodynamic entropy is proposed to supplement traditional coverage at the
junior—senior level. It entails a model for which: (i) energy spreads throughout macroscopic matter
and is shared among microscopic storage modes; (ii) the amount and/or nature of energy spreading
and sharing changes in a thermodynamic process; and (iii) the degree of energy spreading and
sharing is maximal at thermodynamic equilibrium. A function S that represents the degree of energy
spreading and sharing is defined through a set of reasonable properties. These imply that S is
identical with Clausius' thermodynamic entropy, and the principle of entropy increase is interpreted
as nature's tendency toward maximal spreading and sharing of energy. Microscopic considerations
help clarify these ideas and, reciprocally, these ideas shed light on statistical entropy. ©  1996
American Association of Physics Teachers.

I. INTRODUCTION

We propose a new approach for teaching and learning
about entropy in junior—senior level thermodynamics and
statistical physics courses. It is based upon a model in which
energy spreads throughout every macroscopic body and is
shared among its molecules and their microscopic storage
modes. In thermodynamic equilibrium, the degree of this en-
ergy spreading and sharing is maximal, and we seek a func-
tion S that represents it. The function S is assumed to depend
on the system's atomic makeup and the amount of energy it
stores. A procedure for determining S is found by requiring it
to have a set of reasonable properties. These properties turn
out to imply that the function S that represents the degree of
energy spreading and sharing is identical with Clausius' ther-
modynamic entropy function S. Therefore the physical pic-
ture of maximal energy spreading and sharing in equilibrium
provides a metaphor for interpreting and understanding the
meaning of entropy.

The proposed approach is intended to supplement tradi-
tional coverage of entropy, typically based upon the Clausius
and/or Kelvin—Planck statements of the second law of ther-
modynamics. The development is guided and supported in
part by thermodynamic insights obtained from a one-particle
gas model. 1 Together with Ref. 1 this article constitutes a
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58, 209-231 (1986). This is an excellent review article that may be use-
fully consulted by a wide spectrum of readers.

novel two-pronged approach that provides opportunities for
enriching traditional methods of teaching thermal physics.

Several caveats are in order. First, we do not attempt to
achieve maximum generality, elegance, o r  mathematical
rigor. Clausius' original approach and many common text-
book treatments are clearly better in this regard. Our main
objective is to provide a useful physical picture for under-
standing entropy. Second, entropy defies simple explanation,
and the present approach is not likely to alter this radically.
Rather, we hope it can help make entropy less daunting to
students and teachers. Third, the construction of a theory
based upon a set of required properties is unfamiliar to most
students. An important point is that i f  any of the properties
required of the function S are inconsistent with physical re-
ality, then the results will likely be wrong. In essence, these
properties are postulates, and the resulting theory will stand
or fall on the basis of their validity. Some students like this
challenge.

We outline the motivation for seeking a new approach to
thermodynamic entropy in Sec. II. In Sec. III, we elucidate
the idea of energy being spread and shared throughout mac-
roscopic matter, and introduce the set of reasonable proper-
ties required of a bona fide S function. These properties are
used in Sec. IV to show how S can be determined, and that it
is identical with Clausius' thermodynamic entropy. In Sec.
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The essential difference between the coherent superposi‑
tion and the incoherent one regards the positions of the field
maxima and zeroes. In the coherent case, maxima and zeroes
form a stationary fringe pattern: in the incoherent case, they
form an instantaneous pattern that oscillates randomly along
the y axis. On one side, this random motion prevents the
fringes from being seen: on the other side, it does not destroy
the equality of the phases at A and B, which is responsible
for the birth of the fringes in the far field.

1As it stands, Eq. (3) is valid for strictly monochromatic radiation; since our
laser (see Sec. II B) contains two lines corresponding to a longitudinal
mode spacing of 320 MHz, Eq. (3) should contain a beating factor which,
however, does not impair fringe visibility.
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I. INTRODUCTION

We propose a new approach for teaching and learning
about entropy in junior‐senior level thermodynamics and
statistical physics courses. It is based upon a model in which
energy spreads throughout every macroscopic body and is
shared among its molecules and their microscopic storage
modes. In thermodynamic equilibrium, the degree of this en‑
ergy spreading and sharing is maximal, and we seek a func‑
tion S that represents it. The function S is assumed to depend
on the system’s atomic makeup and the amount of energy it
stores. A procedure for determining S is found by requiring it
to have a set of reasonable properties. These properties turn
out to imply that the function S that represents the degree of
energy spreading and sharing is identical with Clausius’ ther‑
modynamic entropy function S. Therefore the physical pic‑
ture of maximal energy spreading and sharing in equilibrium
provides a metaphor for interpreting and understanding the
meaning of entropy.

The proposed approach is intended to supplement tradi‑
tional coverage of entropy, typically based upon the Clausius
and/or Kelvin‐Planck statements of the second law of ther‑
modynamics. The development is guided and supported in
part by thermodynamic insights obtained from a one-particle
gas model.1 Together with Ref. 1 this article constitutes a
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novel two-pronged approach that provides opportunities for
enriching traditional methods of teaching thermal physics.

Several caveats are in order. First, we do not attempt to
achieve maximum generality, elegance, or mathematical
rigor. Clausius’ original approach and many common text‑
book treatments are clearly better in this regard. Our main
objective is to provide a useful physical picture for under‑
standing entropy. Second, entropy defies simple explanation,
and the present approach is not likely to alter this radically.
Rather, we hope it can help make entropy less daunting to
students and teachers. Third, the construction of a theory
based upon a set of required properties is unfamiliar to most
students. An important point is that if any of the properties
required of the function S are inconsistent with physical re‑
ality, then the results will likely be wrong. In essence, these
properties are postulates, and the resulting theory will stand
or fall on the basis of their validity. Some students like this
challenge.

We outline the motivation for seeking a new approach to
thermodynamic entropy in Sec. I I . In Sec. I I I , we elucidate
the idea of energy being spread and shared throughout mac‑
roscopic matter, and introduce the set of reasonable proper‑
ties required of a bona fide S function. These properties are
used in Sec. IV to show how S can be determined, and that it
is identical with Clausius’ thermodynamic entropy. In Sec.
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Fig. 2. Maxwell's distribution of momentum magnitudes for three tempera-
tures. The amount of energy spreading and sharing is indicated by the num-
ber of momentum cells that contain significant fractions of the particles. The
number of these cells increases with temperature.

and intermolecular bond modes are important. While the
function S is expected to increase when rotational and vibra-
tional modes become active, this expectation does not nec-
essarily apply to intermolecular storage modes. The reason is
that intermolecular forces can restrict the spatial freedom of
molecules, i.e., they can decrease the degree o f  energy
spreading. For example, in a crystalline solid, energy spread-
ing is restricted to specific spatial neighborhoods near lattice
sites. In the corresponding vapor phase, where intermolecu-
lar forces are relatively weak, such spatial effects are often
insignificant.

In what follows, we adopt common postulates on the ex-
istence of internal energy, the definition of heat, and the first
law of thermodynamics (see the Appendix). We focus atten-
tion on homogeneous, single-phase systems for which the
internal energy U ,  volume V,  and particle number N
uniquely define a thermodynamic state. S is assumed to be
expressible a s  a  function o f  these variables, i .e. ,
S S ( U ,  V,N), and the first and second partial derivatives of
S are assumed to exist. Typically it is understood that N is
constant, so we suppress the N label in partial derivatives,
e.g., we write (oS/aU)
v
,
N a s  ( d S I  
o t 1 )
1
,  
W e  
r e q u i
r e  
t h a
t  
a

bona fide function S have the seven reasonable properties
labeled in Eqs. (2a)—(2e), (6), and (15) below. (Note: Postu-
lates are labeled with equation numbers followed by an
asterisk—e.g., (2a) *—to make them easy to locate.)

Suppose a system with fixed V and N gains energy. Then
more energy is available to spread throughout the system and
become shared by the system's energy storage modes. It is
reasonable to expect that the degree of energy spreading and
sharing increases with added internal energy, and we require
that

( 9 S h 9 U )
1
, > 0 .  
(
2
a
)
*

An example is a dilute gas that obeys the Maxwellian speed
distribution. This distribution can be viewed in terms of mo-
mentum magnitudes, as shown in Fig. 2. Three curves, for
three different temperatures, show the fraction of molecules
in each specified momentum cell. Viewing these cells as
"states" the Maxwellian curves explicitly show the fraction
of molecules in each state. It is clear from Fig. 2 that energy
is shared significantly in more states as the gas temperature
and internal energy increase. We interpret this as an increase
in the degree of energy spreading and sharing, consistent
with Eq. (2a).

For fixed U and N, it is reasonable to expect the degree of
energy spreading throughout matter to increase with V, the
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Fig. 3. (a) Free expansion of an ideal gas from the left chamber to the whole
container, doubling the volume. The internal energy is unchanged, but be-
comes more spread spatially, i.e., its degree of energy spreading and sharing
increases. (b) Energy transfer from a hot to cold body, decreasing the hot
body's degree of energy spreading and sharing and increasing that of the
cold body.

volume over which that energy is spread. This is because
when more volume is available, the energy U  can spread
over more space. Therefore, we require that

OS I O l t )
u
>  O .  
(
2
b
)
*

For example, a dilute (ideal) gas that expands freely from
volume V to 2 V, as shown in Fig. 3(a), has constant internal
energy. Empirically the temperature does not change. How-
ever, the degree of energy spreading and sharing increases
with V, consistent with Eq. (2b).

Now consider composite systems, which consist of two or
more homogeneous bodies that can exchange energy with
one another. A fundamental question is: How are the S func-
tions for each body related to Stotal which represents the
total degree of energy spreading and sharing for the compos-
ite system? We adopt the simplest possible relationship,
namely, for an n-body composite system,

Sto ta l
=  
S i  
+  
S
2  
+  
•  
•  
•  
+
S
n  
9  
(
2
c
)
*

where S, refers to body i. For example in the special case of
two identical bodies, labeled 1 and 2, with equal internal
energies, the degree of energy spreading and sharing for the
composite system is twice that for either of  them alone,
which seems reasonable. In essence, postulate (2c) means
that we require the degree of energy spreading and sharing in
the composite system to grow linearly with that in the indi-
vidual bodies.

We also require an important extension of postulate (2c).
Consider a homogeneous system in a state described by
(U,V,N) Imagine dividing this system (mentally) into two
subvolumes, X V and (1— X)V, where O<X<1. Assuming
typical short range intermolecular forces, the number of mol-
ecules interacting across the boundary separating subvol-
umes X V and (1— X)V is small relative to N. Therefore the
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Fig. 2. Maxwell’s distribution of momentum magnitudes for three tempera‑
tures. The amount of energy spreading and sharing is indicated by the num‑
ber of momentum cells that contain significant fractions of the particles. The
number of these cells increases with temperature.

and intermolecular bond modes are important. While the
function S is expected to increasewhen rotational and vibra‑
tional modes become active, this expectation does not nec‑
essarily apply to intermolecular storage modes. The reason is
that intermolecular forces can restrict the spatial freedom of
molecules, i.e., they can decrease the degree of energy
spreading. For example, in a crystalline solid, energy spread‑
ing is restricted to specific spatial neighborhoods near lattice
sites. In the corresponding vapor phase, where intermolecu‑
lar forces are relatively weak, such spatial effects are often
insignificant.
In what follows, we adopt common postulates on the ex‑

istence of internal energy, the definition of heat, and the first
law of thermodynamics (see the Appendix). We focus atten‑
tion on homogeneous, single‐phase systems for which the
internal energy U, volume V, and particle number N
uniquely define a thermodynamic state. S is assumed to be
expressible as a function of these variables, i.e.,
S=S (U,V,N), and the first and second partial derivatives of
S are assumed to exist. Typically it is understood that N is
constant, so we suppress the N label in partial derivatives,
e.g., we write (aSMUh/Jv as(aS/aU)V. We require that a
bona fide function S have the seven reasonable properties
labeled in Eqs. (2a)‐(2e), (6), and (15) below. (Note: Postu‑
lates are labeled with equation numbers followed by an
asterisk‐cg, (2a)*‐ to make them easy to locate.)
Suppose a system with fixed V andN gains energy. Then

more energy is available to spread throughout the system and
become shared by the system’s energy storage modes. It is
reasonable to expect that the degree of energy spreading and
sharing increases with added internal energy, and we require
that

(aS/aU)V>0. (2a)*
An example is a dilute gas that obeys the Maxwellian speed
distribution. This distribution can beviewed in terms of mo‑
mentum magnitudes, as shown in Fig. 2. Three curves, for
three different temperatures, show the fraction of molecules
in each specified momentum cell. Viewing these cells as
“states” the Maxwellian curves explicitly show the fraction
of molecules in each state. It is clear from Fig. 2 that energy
is shared significantly in more states as the gas temperature
and internal energy increase. We interpret this asan increase
in the degree of energy spreading and sharing, consistent
with Eq. (2a).
For fixed U andN, it is reasonable to expect the degree of

energy spreading throughout matter to increase with V, the
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Fig. 3. (a) Free expansion of an ideal gas from the left chamber to the whole
container, doubling the volume. The internal energy is unchanged, but be‑
comes more spread spatially, i.e., its degree of energy spreading and sharing
increases. (b) Energy transfer from a hot to cold body, decreasing the hot
body’s degree of energy spreading and sharing and increasing that of the
cold body.

volume over which that energy is spread. This is because
when more volume is available, the energy U can spread
over more space. Therefore, we require that

(aS/dV)U>0. (2b)*

For example, a dilute (ideal) gas that expands freely from
volume V to 2V, as shown in Fig. 3(a), has constant internal
energy. Empirically the temperature does not change. How‑
ever, the degree of energy spreading and sharing increases
with V, consistent with Eq. (2b).
Now consider composite systems, which consist of two or

more homogeneous bodies that can exchange energy with
one another. A fundamental question is: How are the S func‑
tions for each body related to Stem, which represents the
total degree of energy spreading and sharing for the compos‑
ite system? We adopt the simplest possible relationship,
namely, for an n-body composite system, *

Stotal=Sl+S2+"'+Sn’ (20)

where S, refers to body i. For example in the special case of
two identical bodies, labeled 1 and 2, with equal internal
energies, the degree of energy spreading and sharing for the
composite system is twice that for either of them alone,
which seems reasonable. In essence, postulate (20) means
that we require the degree of energy spreading and sharing in
the composite system to grow linearly with that in the indi‑
vidual bodies.
We also require an important extension of postulate (2c).

Consider a homogeneous system in a state described by
(U,V,N). Imagine dividing this system (mentally) into two
subvolumes, AV and (1‐A)V, where 0<A<1. Assuming
typical short range intermolecular forces, the number of mol‑
ecules interacting across the boundary separating subvol‑
umes RV and (1‐h)V is small relative to N. Therefore the
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sumption that the second derivatives of S exist, requires that
S behave as illustrated in Fig. 4. The important mathematical
property that emerges is
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Condition (3c) is considered by some to be the essence of
thermodynamics, but it is not satisfied by "exotic" systems,
e.g., black holes, that have negative heat capacities.1 5
'
1 7 - 2 2
We accept it as an essential property for nonexotic matter.
Although we considered two identical bodies in order to ar-
rive at (3c), any two (nonexotic) bodies can be used, and in
this respect (3c) is quite general.
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In Eq. (4b) we have omitted the subscripts on the partial
derivatives for simplicity. The two middle terms in the curly
brackets are zero because S 1 is independent of U2 and S2 is
independent of U
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maximum.
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(5) holds. Based upon experience, we interpret this to reflect
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Fig. 5. S functions for body 1 with (V ,N) and body 2 with (21/,2N). The
initial energy=1.5 U* for each body (open circles). In the final states, a and
b (solid circles), the two curves have equal slopes.
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simplest such relationship is
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The requirement that S must satisfy Eq. (6) constitutes our
sixth postulate.

We adopt postulate (6) subject to validation after we de-
termine the algorithm for S. Notice that it implies that S has
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i
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)

where the derivatives are taken with V and N fixed. This can
be generalized to show that T(U,V,N)=T(XU,XV,XN).

To appreciate the importance of Eqs. (5)-(7), it is helpful
to discuss the following example for which two bodies are
made of the same material. Body 1 has volume V and N
molecules, and body 2 has volume 2 V and 2N molecules,
but both bodies have the same, initial energy, say 1.5U*. I f
we allow the bodies to exchange energy, then initially body 1
has more than its fair share of energy, based upon propor-
tional scaling, and body 2 has less than its fair share. We
expect that energy spreading and sharing will lead to an
equilibrium situation whereby body 1 has half the energy of
body 2. Furthermore because body 1 has excess energy ini-
tially, we expect it to have a higher initial temperature than
body 2. When the bodies are placed in thermal contact, we
expect energy to flow from body 1 to body 2 until tempera-
ture equality exists, i.e., the internal energy of body 2 in-
creases from 1.5U* to 2U* and that for body 1 decreases
from 1.5U* to U*.

We now show that our postulates imply behavior that is
consistent with these expectations. Figure 5 shows that ini-
tially, the slope of the S curve is smaller for body 1 than for
body 2, which corresponds to T i >  T2, as expected. During
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Fig. 4. A typical curve of S vs U, with three labeled points, (U1,S1),
(U2,Sz), and (U,,Sf), where Uf satisfies Eq. (3b). The inequality (3a) for
Sf assures that (U f,Si) does not lie below the chord that connects (U1,S1)
and (U2,52). At constant volume, S(U) must have a concave shape, and
(aZS/aU2)V<0.

The equality in (3a) holds only if U1:U2= Uf.
Equations (3a) and (3b) must hold for arbitrary U1 and

U2. They have a simple interpretation: A chord drawn be‑
tween two points, (U1,Sl) and (U2,Sz), lies below the S
curve. Functions satisfying these properties are called
concave.16 This property, with postulate (2a) and the as‑
sumption that the second derivatives of S exist, requires that
S behave asillustrated in Fig. 4. The important mathematical
property that emerges is

(025/49U2)V<0. (3c)
Condition (30) is considered by some to be the essence of
thermodynamics, but it is not satisfied by “exotic” systems,
e.g., black holes, that have negative heat capacities.15’17‘22
We accept it as an essential property for nonexotic matter.
Although we considered two identical bodies in order to ar‑
rive at (3c), any two (nonexotic) bodies can be used, and in
this respect (3c) is quite general.
From our discussion of Fig. 3(b) in Sec. I I I ,S must have a

relative,maximumatequilibrium. Thus, using the constraint,
U1+U2=constant, or dU1= ‐dU2,

dS={((z9Sl/¢9U1)V1‐(aSz/8U2)V2)}dU1=O, (4a)

and

d2s=%{(aZS1/o’*Uf)‐(0251/¢9U20U1)
~(azsz/auzavl)+(a2sz/aU§)}dU§<0. (4b)

In Eq. (4b) we have omitted the subscripts on the partial
derivatives for simplicity. The two middle terms in the curly
brackets are zero because 51 is independent of U2 and S2 is
independent of U1. The first and last terms are negative be‑
cause of Eq.(3c), assuring that the extremum is indeed a
maximum.
Condition (4a) implies that at equilibrium,

(351/3U1)v1=(552/¢9U2)V2- (5)
Referringagain to Fig. 3(b), bodies 1and 2 have initial states
with U1 and U2. If the separating partition changes from
insulating to conducting, the final state f is attained and Eq.
(5) holds. Based upon experience, we interpret this to reflect
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25"

Fig. 5. S functions for body 1with (V,N) and body 2 with (2V,2N). The
initial energy:1.5 U* for each body (opencircles). In the final states, a and
b (solid circles), the two curves have equal slopes.

temperature equality. Notice that Eq. (30) implies that
(8S/6U)V is adecreasing, function of internal energy,which
suggests that it is inversely related to temperature T. The
simplest such relationship is
(as/fiU)VE1/T>0 or equivalently,TE(aU/0S)V>0.

(6)*
The requirement that S must satisfy Eq. (6) constitutes our
sixth postulate.
We adopt postulate (6) subject to validation after we de‑

termine the algorithm for S. Notice that it implies that S has
units JK‘l. Equation (6) has the desirable property that T is
an intensive variable, because the derivative of anextensive
variable with respect to anextensive variable is intensive. To
see this, consider two bodies that are identical except that
one is twice the size of the other, with twice the energy, and
twice the particle number. The existence and additivity of S
imply that S(2U,2V,2N)=2S(U,V,N). Therefore if
T1: 1/(8S(U,V,N)/¢9U)V is the temperature of the smaller
system, then

T2:[aS(2U,2V,2N)/a(2U)]‘1
=[aS(U,V,N)/0U]‘1_=T1, (7)

where the derivatives are taken with V andN fixed. This can
be generalized to show that T(U,V,N)= T()\ U,)\V,AN).
To appreciate the importance of Eqs. (5)-(7), it is helpful

to discuss the following example for which two bodies are
made of the same material. Body 1 has volume V and N
molecules, and body 2 has volume 2V and 2N molecules,
but both bodies have the same, initial energy, say 1.5U*. If
weallow the bodies to exchange energy, then initially body 1
has more than its fair share of energy, based upon propor‑
tional scaling, and body 2 has less than its fair share. We
expect that energy spreading and sharing will lead to an
equilibrium situation whereby body 1 has half the energy of
body 2. Furthermore because body 1 has excess energy ini‑
tially, we expect it to have a higher initial temperature than
body 2. When the bodies are placed in thermal contact, we
expect energy to flow from body 1 to body 2 until tempera‑
ture equality exists, i.e., the internal energy of body 2 in‑
creases from 1.5U* to 2U* and that for body 1 decreases
from 1.5U* to U*.
We now show that our postulates imply behavior that is

consistent with these expectations. Figure 5 shows that ini‑
tially, the slope of the S curve is smaller for body 1 than for
body 2, which corresponds to T1>T2, as expected. During
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lowered gas energy. A  similar statement can be made for
slow adiabatic compressions.

The combination of Eqs. (6) and (16) leads to the impor-
tant relationship,

( d S l o V )
u
= p I T,  
(
1
7
)

which can be verified using the cyclic identity of partial dif-
ferentiation; i.e.,
(aU I a S )
v
( c 9 S  
I  
o V )
u
( O V I  
d U
)
s

O S )
v
( a S  
I  
o
V )
u  
I
O
U  
d
V
)
s
=  
—
1
.

Case 3. Constant-volume work processes. Combining Eqs.
(12) and (16), we find

dS= ( 1 8 )
Positive, constant-volume work on a system can be induced,
for example, by mechanical stirring of a gaseous system or
by electrical work on a wire system, inducing an electric
current in i t  (assuming negligible volume change). Recall
that we have in mind homogeneous, constant-N systems
whose states can be specified in terms of T and V. I t  is
impossible to do negative constant-volume work on these
systems; i.e., to get positive work out of them. For example,
we cannot get electric work out of such a system because it is
homogeneous, which precludes it from containing a battery.
The point is that if d 0 ,  then T h e r e f o r e ,  Eq. (18)
becomes

dS--8(2IT for constant volume work processes. (19)
The equality holds if and only if the constant-volume work is
identically zero.

Case 4. Rapid volume change. For a sufficiently rapid
work process, we expect the effect of increased energy to
dominate over the volume effect, resulting in an overall in-
crease in S. For example, a rapid infinitesimal compression
of a gas that changes its volume by d V<O, entails work
814
7-
-= 
—
p  
e
„ ,
d  
V
,  
w
h
e
r
e  
p
e
x
t  
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s  
t
h
e  
e
x
t
e
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n
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p
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e
s
s
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e
.  
O
b
v
i
-

ously, I2ext>PY the equilibrium gas pressure, or the process
cannot be "fast." Thus SW> — pdV, i.e., extra work, above
and beyond —pdV, is done on the gas. Similar behavior was
seen also in the simple mechanical model of Ref. 1. The
latter inequality also can be argued on other grounds.
23 U s i n git in Eq. (18), we find

d S - - -
-
8 C o l
T  
d u
r i n
g  
a  
v
o
l
u
m
e  
c
h
a
n
g
e
.  
(
2
0
)

The equality holds i f  and only i f  SW= — pdV= 8Wrev
,namely, for an infinitely slow, reversible volume change.
This concludes case 4.

Our discussion of cases 1-4 shows that for an infinitesi-
mal change of thermodynamic variables in a system, the first
law of thermodynamics, Eq. (10), holds and the correspond-
ing change dS in the degree of energy spreading and sharing
satisfies

and
dS= 8Q
rev  
I T  
f o r  
r e v
e r s
i b l
e  
p r
o c
e s
s e
s ,

dS> SQIT for irreversible processes.
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(21a)

(21b)
Equation (21a) is identical with the traditional defining equa-
tion for entropy in classical thermodynamics. Evidently, the
degree of energy spreading and sharing, S, is identical to the
entropy function (within an additive constant). Together,
Eqs. (21a) and (21b) constitute a statement of the second law
of thermodynamics.

Although Eq. (21a), by itself, gives little indication that S
has any physical significance, the development that led to it
is replete with physical underpinnings. The contrast between
the physical picture of S as a measure of the degree of inter-
nal energy spreading and sharing and the obscure nature of
Eq. (21a) is striking. Equation (21a) is best viewed as a valu-
able algorithm that enables us to determine S(U, V) relative
to its value in some chosen reference state, (U, , V,), using a
fictitious reversible path. Just as the complex chemical reac-
tions that occur during the baking of a cake are not evident
from its recipe, the physical meaning of energy spreading
and sharing is well hidden by its algorithm.

We now confirm the validity of our temperature definition
in Eq. (6). Consider a reversible Camot cycle, which consists
of two isothermal (constant-T) segments at temperatures Th
and T ,<T
h
,  
a l t e r
n a t e
d  
w i
t h  
t
w
o  
a d
i a
b a
t i
c  
s e
g
m
e n
t s
.  
T
h
e  
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e
t

change in S for the working fluid is zero for a complete
cycle, and Eq. (21a) implies that Q
h
/ T
h  =  Q , I T „ ,  
w h e r e  
Q ,  
i s

the magnitude of the heat to the system at temperature T, for
i = c,h. We choose Th or T, to be a reference temperature,
say, T
t r
= 2 7
3 . 1
6  
K  
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h
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temperature can be expressed in terms of Q, and Qh. The
prescription in this paragraph actually defines the Kelvin
temperature scale. Therefore, Eq. (6) plus our chosen refer-
ence temperature gives a temperature scale that is identical
with the Kelvin scale.

V. ENHANCING THE TEACHING AND LEARNING
OF THERMODYNAMICS

In this section, we suggest several ways that the present
approach might be helpful to teachers and students of ther-
modynamics. First, the approach suggests an unconventional
definition: Thermodynamics is the science dealing with en-
ergy spreading and sharing in macroscopic bodies, and with
changes in the degree and/or nature of that energy spreading
and sharing induced by work and/or heat processes. This can
be compared with a definition from a respected, modern
dictionary:
24 
" t h e r
m o d y
n a m i
c s  
(
i
s  
t
h
e
)  
s c
i e
n c
e  
c
o
n
c
e r
n
e
d

with the relations between heat and mechanical energy or
work, and the conversion of one into the other; modem ther-
modynamics deals with the properties of systems for the de-
scription of which temperature is a necessary coordinate."
This common definition is inadequate in two ways: (i) i t
omits a fundamental aspect of thermodynamics, namely, that
energy is stored within matter; and (ii) it seems to exclude
the free expansion of a gas (and perhaps any adiabatic pro-
cess) as a bona fide thermodynamic process. Classroom dis-
cussions comparing these definitions can stimulate critical
thought about the essence of thermodynamics.

The first and second laws can be summarized in terms of
energy spreading and sharing as follows: Macroscopic sys-
tems store energy that spreads over accessible space and is
shared by available microscopic energy storage modes. Like
energy, the degree of energy spreading and sharing is a quan-
tifiable, additive function of state. Changes in the way energy
is spread and shared conserve energy, and the total degree of
energy spreading and sharing is maximized at equilibrium.
Additionally, the third law of thermodynamics can be framed
as follows: At ultra-low temperatures, the degree of energy
spreading and sharing approaches an absolute minimum,
which is independent of externally variable parameters, and
can be defined to be zero. With the latter definition, we as-
sociate the limit S-40 with limit T-03; i.e., for T-A ,  the
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IOWered gas energy. A similar statement can be made for
slow adiabatic compressions.

The combination of Eqs. (6) and (16) leads to the impor‑
tant relationship,

(dS/dV)U=p/T, (17)
which can be verified using the cyclic identityof partial dif‑
ferentiation; i.e.,
(aU/dS)V(¢9S/6V)U(0V/8U)S

= (aU/aS)V(aS/aV)U/(aU/aV)S= - 1.
Case 3. Constant‐volume workprocesses. Combining Eqs.

(12) and (16), we find
as:5Q/T+[5W+pdV]/T. (18)

Positive, constant-volume work on a system can be induced,
for example, by mechanical stirring of a gaseous system or
by electrical work on a wire system, inducing an electric
current in it (assuming negligible volume change). Recall
that we have in mind homogeneous, constant-N systems
whose states can be specified in terms of T and V. It is
impossible to do negative constant-volume work on these
systems; i.e., to get positive work out of them. For example,
we cannot get electric work out of such asystem because it is
homogeneous, which precludes it from containing a battery.
The point is that if dV=O, then ( s w a n . Therefore, Eq. (18)
becomes

dSde/T for constant volume work processes. (19)
The equality holds if and only if the constant-volume work is
identically zero.

Case 4. Rapid volume change. For a sufficiently rapid
work process, we expect the effect of increased energy to
dominate over the volume effect, resulting in an overall in‑
crease in S. For example, a rapid infinitesimal compression
of a gas that changes its volume by dV<0, entails work
5W= ‐ p d e , where pext is the external pressure. Obvi‑
ously, pm>p, the equilibrium gas pressure, or the process
cannot be“fast.” Thus 5W> ‐‐pd V, i.e., extra work, above
and beyond ‐ pd V, is done on the gas. Similar behavior was
seen also in the simple mechanical model of Ref. 1. The
latter inequality also can beargued on other grounds.23 Using
it in Eq. (18), we find

dSBJQ/T during a volume change. (20)
The equality holds if and only if 5W= ‐p d V = 5WTCV ’
namely, for an infinitely slow, reversible volume change.
This concludes case 4.

Our discussion of cases 1 ‐4 shows that for an infinitesi‑
mal change of thermodynamic variables in a system, the first
law of thermodynamics, Eq. (10), holds and the correspond‑
ing change dS in the degree of energy spreading and sharing
satisfies

dS= (SQm/T for reversible processes, (21a)
and

dS> 6Q/T for irreversible processes. (21b)
Equation (21a) is identical with the traditional defining equa‑
tion for entropy in classical thermodynamics. Evidently, the
degree of energy spreading and sharing, S, is identical to the
entropy function (within an additive constant). Together,
Eqs. (21a) and (21b) constitute astatement of the second law
of thermodynamics.
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Although Eq. (21a), by itself, gives little indication that S
has any physical significance, the development that led to it
is replete with physical underpinnings. The contrast between
the physical picture of S asameasure of the degree of inter‑
nal energy spreading and sharing and the obscure nature of
Eq. (21a) is striking. Equation (21a) is best Viewed asavalu‑
able algorithm that enables us to determine S(U,V) relative
to its value in some chosen reference state, (U,-,V,-), using a
fictitious reversible path. Just asthe complex chemical reac‑
tions that occur during the baking of a cake are not evident
from its recipe, the physical meaning of energy spreading
and sharing is well hidden by its algorithm.

We now confirm the validity of our temperature definition
in Eq. (6). Consider areversible Carnot cycle, which consists
of two isothermal (constant-T) segments at temperatures Th
and Tc< Th, alternated with two adiabatic segments. The net
change in S for the working fluid is zero for a complete
cycle, and Eq. (21a) implies that Qh/Th= Qc/TC ,where Qi is
the magnitude of the heat to the system at temperature T,-for
i=c ,h . We choose Th or TCto be a reference temperature,
say, Ttr=273.16 K at the triple point of H20, and the other
temperature can be expressed in terms of QC and Qh. The
prescription in this paragraph actually defines the Kelvin
temperature scale. Therefore, Eq. (6) plus our chosen refer‑
ence temperature gives a temperature scale that is identical
with the Kelvin scale.

V. ENHANCING THE TEACHING AND LEARNING
OF THERMODYNAMICS

In this section, we suggest several ways that the present
approach might be helpful to teachers and students of ther‑
modynamics. First, the approach suggests an unconventional
definition: Thermodynamics is the science dealing with en‑
ergy spreading and sharing in macroscopic bodies, and with
changes in the degree and/or nature of that energy spreading
and sharing induced by work and/or heat processes. This can
be compared with a definition from a respected, modern
dictionary:24 “thermodynamics (is the) science concerned
with the relations between heat and mechanical energy or
work, and the conversion of one into the other; modern ther‑
modynamics deals with the properties of systems for the de‑
scription of which temperature is a necessary coordinate.”
This common definition is inadequate in two ways: (i) it
omits a fundamental aspect of thermodynamics, namely, that
energy is stored within matter; and (ii) it seems to exclude
the free expansion of a gas (and perhaps any adiabatic pro‑
cess) asa bona fide thermodynamic process. Classroom dis‑
cussions comparing these definitions can stimulate critical
thought about the essence of thermodynamics.

The first and second laws can be summarized in terms of
energy spreading and sharing as follows: Macroscopic sys‑
tems store energy that spreads over accessible space and is
shared by available microscopic energy storage modes. Like
energy, the degree of energy spreading and sharing is a quan‑
tifiable, additive function of state. Changes in the way energy
is spread and shared conserve energy, and the total degree of
energy spreading and sharing is maximized at equilibrium.
Additionally, the third law of thermodynamics can be framed
as follows: At ultra-low temperatures, the degree of energy
spreading and sharing approaches an absolute minimum,
which is independent of externally variable parameters, and
can be defined to be zero. With the latter definition, we as‑
sociate the limit S‐>O with limit T‐>0; i.e., for T‐>O, the
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(22)
where F(3N/2) is a gamma function. The factor V
N  c o m e sfrom the configurational integrals and the quantity in square
brackets  is the surface area of a 3N-dimensional sphere of
radius V2mU, which comes from the momentum integrals.
25The important point is that the multiple integrals in Eq.
(22) account for all possible spatial configurations (i.e., en-
ergy spreading) and momentum combinations (i.e., energy
sharing), and therefore I/ is a measure of the maximal degree
of energy spreading and sharing. Although the second de-
rivative of f i  with respect to U is not negative, In f  has a
negative second derivative and also obeys the additivity re-
quirement. For reasons related to the so-called Gibbs para-
dox, In I), is not properly extensive but In (IVN!) is. A gen-
eral form (not restricted to the ideal gas) that is consistent
with all required properties of S is

S(U,V,N)=k 114,11(U,V,N)1(N! f l
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makes the argument of the logarithm dimensionless, and k is
an arbitrary constant. I /
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simplicity. A  more common choice, f 1
0
= h
3 N
,  w h e r e  h  
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Planck's constant, is motivated by quantum considerations.
As mentioned, Eq. (23) transcends the ideal gas, and is

applicable to any N-particle classical system. It is a bona fide
measure of  the degree of  maximal energy spreading and
sharing because i t  accounts for all allowed displacements
and momenta. In fact, Eq. (23) is the standard entropy func-
tion of classical statistical mechanics in the microcanonical
ensemble formalism, with k equal to Boltzmann's constant.
The argument here supports the notion that the degree of
spreading and sharing is quantifiable. Reciprocally, the idea
of energy spreading and sharing enriches our understanding
of entropy in statistical physics. Typically Eq. (23) is en-
countered in the context of an ensemble of systems whose
energies lie in a relatively small interval about U, but with-
out a compelling physical picture.

Returning to the ideal gas, there is another microscopic
argument that helps show that S is a measure of the degree of
energy spreading and sharing. First, we use Eq. (22) in Eq.
(23), replace (3N-1)/2 by 3N/2 for large N, and apply Eqs.
(6) and (17). This leads to  the well-known equations
U= 3NkTI2 and p= NkTIV. Then S can be simplified using
Stirling's approximation, In f(n I n ( n ) — n ,  for large
n where, for integral n, F (n+1)=n! It is helpful to use the
shorthand notation v a n d

X = h/(2TrmkT)
1
/
2
. 
( 2
4 )

v is the specific volume (per atom) and m is the atomic mass.
X is called the thermal wavelength, which is the same order
of magnitude as the quantum mechanical deBroglie wave-
length. X represents the spatial extent of an atom's wave
packet, and X
3 i s  
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The entropy function can be written as
S(T,V,N)=Nk[In(v /X
3
) +  
c o n s t a n t ] .  
( 2 5
)

This equation can be obtained directly using classical ther-
modynamics, b y  integrating the  equations ( 8S I9U)
v=3Nk la l  and ( d S l d V )
u
= N I t I V ,  a n d  
r e q u i r i n g  
t h a t  
S  
b e
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extensive. The specific volume can be envisaged as follows.
Mentally divide V into N nonoverlapping subvolumes, each
with volume v O n  average, each subvolume contains one
atom. If one atom leaves a particular subvolume and another
one enters it, the situation is unchanged because atoms are
considered to be indistinguishable from one another. In this
sense, the volume v , per atom, is a meaningful quantity.

Equation (25) has an interesting interpretation. S is a func-
tion of v /X
3
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volume of the particle. Because each wave packet occupies
volume X
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spread because it occupies less volume itself, and thus S is
higher. For temperature T < T
0
,  t h e  
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ment of this view is that v can be divided (mentally) into a
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depicted in Fig. 8(b). The atom can spread its energy to any
of these M cells. Increasing the temperature decreases X and
increases M; thus, energy can spread over more cells. This
increases S. Decreasing the temperature has the opposite ef-
fect.

Therefore an energy gain at fixed volume causes (i) each
gas atom to share more energy, and (ii) each atomic blob to
spread its energy over more space because X
3 d e c r e a s e s .Similarly, an energy loss will decrease both energy sharing
and spreading. In this view, energy spreading and sharing are
intertwined, and energy spreading depends on T as well as V.
This is a quantum mechanical nuance in a system that is
describable largely by classical physics. Of course, i f  T is
lowered sufficiently, X
3 b e c o m e s  
c o m p a r
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w i t
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atoms' wave packets interfere with one another. Then Eq.
(25) breaks down and a proper quantum mechanical expres-
sion for S must be used.

A similar argument using Eqs. (24) and (25) brings an-
other interesting result. The deBroglie wavelength, X ,
changes with atomic mass at fixed temperature. This means
that, for example, a dilute N-atom gas of neon at temperature
T is expected to have a lower entropy than a similar gas of
radon, whose atoms are about ten times more massive. En-
tropy data
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tendency, but also show deviations caused by other contribu-
tions, e.g., from electronic states. We did not address these
and the oscillatory behavior in Fig. 9(a) suggests that they
are not negligible. Figure 9(b) shows similar data for mon-
atomic solids. Again S tends to increase, but deviations from
this tendency can come from variations in crystal structure
and atomic properties.

The latter mass dependence can be understood also in
terms of the fact that the quantized energy spectrum becomes
more dense with increasing mass. To appreciate this effect,
we introduce a  quantum-based interpretation o f  energy
spreading and sharing. A system can reside in any of a (typi-
cally large) number of many-particle states that are consis-
tent with existing conditions, such as fixed temperature. Sup-
pose a list of these available states is printed on paper, with
a bullet (•) placed alongside the state that is occupied at time
t. For later times there can be transitions to other states and
the bullet shifts from one state on the list to another. The
bullet's trajectory is analogous to the phase space trajectory
we examined earlier in this section. Here the degree of en-

H. S. Leff 1 2 6 9

Q(U,V,N)

=J d3r1d3r2' ' 'd3er 2 d3p1d3p2' ’ 'd3pN
V 2in =2mU

= VN[2173N/2(2mU)(3N_1)/2/1"(3N/2)], (22)
where l"(3N/2) is a gamma function. The factor VN comes
from the configurational integrals and the quantity in square
brackets is the surface area of a 3N‐dimensional sphere of
radius «2mU, which comes from the momentum integrals.25
The important point is that the multiple integrals in Eq.

(22) account for all possible spatial configurations (i.e., en‑
ergy spreading) and momentum combinations (i.e., energy
sharing), and therefore Q is ameasure of the maximal degree
of energy spreading and sharing. Although the second de‑
rivative of Q with respect to U is not negative, In Q has a
negative second derivative and also obeys the additivity re‑
quirement. For reasons related to the so-called Gibbs para‑
dox, ln 0 is not properly extensive but ln (fl/N!) is. A gen‑
eral form (not restricted to the ideal gas) that is consistent
with all required properties of S is

S(U,V,N)=k ln[Q(U,V,N)/(N!QO)], (23)
where 90 is an arbitrary reference phase space volume that
makes the argument of the logarithm dimensionless, and k is
anarbitrary constant. 00 may be taken to be 1.00 (Js)31V for
simplicity. A more common choice, QO=h , where h is
Planck’s constant, is motivated by quantum considerations.
As mentioned, Eq. (23) transcends the ideal gas, and is

applicable to anyN-particle classical system. It is abonafide
measure of the degree of maximal energy spreading and
sharing because it accounts for all allowed displacements
and momenta. In fact, Eq. (23) is the standard entropy func‑
tion of classical statistical mechanics in the microcanonical
ensemble formalism, with k equal to Boltzmann’s constant.
The argument here supports the notion that the degree of
spreading and sharing is quantifiable. Reciprocally, the idea
of energy spreading and sharing enriches our understanding
of entropy in statistical physics. Typically Eq. (23) is en‑
countered in the context of an ensemble of systems whose
energies lie in a relatively small interval about U, but with‑
out a compelling physical picture.
Returning to the ideal gas, there is another microscopic

argument that helps show that S is ameasure of the degree of
energy spreading and sharing. First, we use Eq. (22) in Eq.
(23), replace ( 3N ‐1)/2 by 3N/2 for largeN, and apply Eqs.
(6) and (17). This leads to the well-known equations
U= 3NkT/2 andp=NkT/V. Then S can be simplified using
Stirling’s approximation, ln F(n+1)~n ln(n)-n, for large
n where, for integral n, F(n+ 1)=n! It is helpful to use the
shorthand notation vE V/N and

x=h/(27rka)1/2. (24)
v is the specific volume (per atom) andm is the atomic mass.
K is called the thermal wavelength, which is the same order
of magnitude as the quantum mechanical deBroglie wave‑
length. x represents the spatial extent of an atom’s wave
packet, and A3 is the corresponding wave packet’s volume.
The entropy function can be written as

S(T,V,N)=Nk[ln(v/)t3)+c0nstant]. (25)
This equation can be obtained directly using classical ther‑
modynamics, by integrating the equations (8S/6U)V
=3Nk/2U and (0S/aV)U=Nk/V, and requiring that S be
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extensive. The specific volume can be envisaged asfollows.
Mentally divide V into N nonoverlapping subvolumes, each
with volume v. On average, each subvolume contains one
atom. If one atom leaves aparticular subvolume and another
one enters it, the situation is unchanged because atoms are
considered to be indistinguishable from one another. In this
sense, the volume v, per atom, is ameaningful quantity.
Equation (25) has aninteresting interpretation.S is a func‑

tion of 110.3, the ratio of the specific volume to the quantum
volume of the particle. Because each wave packet occupies
volume A3, the remaining volume available to it is (v‐A3).
In the classical domain, v>h3, and anatom’s wave packet is
a tiny blob of volume A3that spreads throughout the much
larger volume v‐A3. If the blob has volume A?) at a given
temperature T0, then at temperature T> To, the blob’s vol‑
ume is x3<x0. The blob has abit more space over which to
spread because it occupies less volume itself, and thus S is
higher. For temperature T< T0, the reverse is true. A refine‑
ment of this view is that u can be divided (mentally) into a
grid of M Ev/)\3 cells, each the size of a wave packet, as
depicted in Fig. 8(b). The atom can spread its energy to any
of these M cells. Increasing the temperature decreases k and
increases M; thus, energy can spread over more cells. This
increases S. Decreasing the temperature has the opposite ef‑
fect.
Therefore an energy gain at fixed volume causes (i) each

gas atom to share more energy, and (ii) each atomic blob to
spread its energy over more space because 7&3 decreases.
Similarly, an energy loss will decrease both energy sharing
and spreading. In this view, energy spreading and sharing are
intertwined, and energy spreading depends onT aswell asV.
This is a quantum mechanical nuance in a system that is
describable largely by classical physics. Of course, if T is
lowered sufficiently, A3becomes comparable with v and the
atoms’ wave packets interfere with one another. Then Eq.
(25) breaks down and a proper quantum mechanical expres‑
sion for S must be used.
A similar argument using Eqs. (24) and (25) brings an‑

other interesting result. The deBroglie wavelength, k,
changes with atomic mass at fixed temperature. This means
that, for example, adiluteN-atom gas of neon at temperature
T is expected to have a lower entropy than a similar gas of
radon, whose atoms are about ten times more massive. En‑
tropy data26 in Fig. 9(a) for monatomic gases confirm this
tendency, but also show deviations caused by other contribu‑
tions, e.g., from electronic states. We did not address these
and the oscillatory behavior in Fig. 9(a) suggests that they
are not negligible. Figure 9(b) shows similar data for mon‑
atomic solids. Again S tends to increase, but deviations from
this tendency can come from variations in crystal structure
and atomic properties.
The latter mass dependence can be understood also in

terms of the fact that the quantized energy spectrum becomes
more dense with increasing mass. To appreciate this effect,
we introduce a quantum-based interpretation of energy
spreading and sharing. A system can reside in any of a (typi‑
cally large) number of many-particle states that are consis‑
tent with existing conditions, such asfixed temperature. Sup‑
pose a list of these available states is printed on paper, with
abullet (~) placed alongside the state that is occupied at time
t. For later times there can be transitions to other states and
the bullet shifts from one state on the list to another. The
bullet’s trajectory is analogous to the phase space trajectory
we examined earlier in this section. Here the degree of en‑
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suggestions that led me to adopt the terminology "energy
spreading and sharing" in place of the less precise "mix-
ing," which I had chosen originally.
12
APPENDIX: ACCEPTED COMMON POSTULATES

We adopt the following three common postulates. The first
one addresses the existence of equilibrium states and internal
energy. The formal statement is: For a thermodynamic sys-
tem with N particles (atoms and/or molecules), equilibrium
states exist. An equilibrium state a has the internal energy,
U
a 
S
p
e
c
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f
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t
i
o
n  
o
f  
a  
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n
i
q
u
e
,  
r
e
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e  
s
t
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t
e  
a  
r
e
q
u
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e
s

at least two variables, e.g., temperature and volume, for fixed
N.

The second postulate is that heat is definable in terms of
work. This is essential to bridge the gap between mechanics
and thermodynamics. The formal postulate is: Any two states
can be connected adiabatically.
6
'
3
' T h i s  
e n a b l e s  
a  
d e t e r m i n a
-

tion of A U= W, where W is the work done on the system.
An example is raising the temperature of water by a pure-
work process using a blender's rotating blades to agitate the
water molecules. Once A U
-
L / 1 ,
—
U ,  i s  
k n o w n ,  
t h e n  
f o r  
a

pure heat process (with zero work on the system) taking the
system from state a to state b, L I = U b
—
U
a
,  w h e r e  Q

is the energy transferred to the system.
The third postulate is the first law of thermodynamics,

which entails three major ideas: (i) energy exchanges can be
in the form of heat or work; (ii) the state function, U, exists;
and (iii) energy is conserved. The formal statement is: For a
process a
-
> b  
t h a t  
i n v
o l v
e s  
w
o
r
k  
W  
(
o
n  
t
h
e  
s
y
s
t
e
m
)  
a
n
d  
h
e
a
t

Q (energy transfer to the system), A U= U b
— /  Q  W .Evaluation of A U with a pure-work (adiabatic) process, as
discussed above, enables the definition of Q. The heat Q
depends upon the specific path along which work W is done,
and both W and Q are path-dependent quantities, while A U
is path independent.
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suggestions that led me to adopt the terminology “energy
spreading and sharing” in place of the less precise “mix‑
ing,” which I had chosen originally.12

APPENDIX: ACCEPTED COMMON POSTULATES

We adopt the following three common postulates. The first
one addresses the existence of equilibrium states and internal
energy. The formal statement is: For a thermodynamic sys‑
tem With N particles (atoms and/or molecules), equilibrium
states exist. An equilibrium state a has the internal energy,
Ua. Specification of a unique, reproducible state a requires
at least two variables, e.g., temperature and volume, for fixed
N.
The second postulate is that heat is definable in terms of

work. This is essential to bridge the gap between mechanics
and thermodynamics. The formalpostulate is: Any two states
can beconnected adiabaticallyfi’3 This enables adetermina‑
tion of AU = W, where W is the work done on the system.
An example is raising the temperature of water by a pure‑
work process using a blender’s rotating blades to agitate the
water molecules. Once AU E Ub‐ Ua is known, then for a
pure heat process (with zero work on the system) taking the
system from state a to state b, QEAU=Ub‐ Ua , where Q
is the energy transferred to the system.
The third postulate is the first law of thermodynamics,

which entails three major ideas: (i) energy exchanges can be
in the form of heat or work; (ii) the state function, U, exists;
and (iii) energy is conserved. The formal statement is: For a
process a‐>b that involves work W (on the system) and heat
Q (energy transfer to the system), AU= Ub‐ Ua=Q+W.
Evaluation of AU with a pure-work (adiabatic) process, as
discussed above, enables the definition of Q. The heat Q
depends upon the specific path alongwhich work W is done,
and both W and Q are path-dependent quantities, while AU
is path independent.
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ergy spreading and sharing depends on the density of the
system's quantum states, which is known to increase with
particle mass for various model systems, such as ideal gases
and Debye solids. Thus we expect S to increase with atomic
mass, subject to the kinds of deviations evident in Figs. 9(a)
and 9(b).

NUL CONNECTIONS WITH CLAUSIUS

a

We close with a brief discussion of Clausius' two original
approaches to entropy,and their relationship with the present
approach. The more general of these rested on three funda-
mental principles: the equivalence of work and heat (i.e., the
first law of thermodynamics), Clausius's statement of the
second law (discussed in Sec. V), and the law of the equiva-
lence of transformations. The latter entailed the idea that in
cyclic processes, certain transformations (e.g., heat to work)
are equivalent to other ones (e.g., heat conduction) in a well-
defined sense. Clausius postulated the existence of numerical
equivalence values for such transformations and used his
"law of the equivalence of transformations" to ultimately
arrive at what is now called the Clausius inequality and the
entropy funct ion .
27-29 
C l a u s i u s
'  
a n a l y
s i s  
w a
s  
b r i l l
i a n t
,  
b
u
t

the equivalence value idea is difficult to grasp, and is not
even mentioned in most thermodynamics textbooks. The
main points to be emphasized here are: (i) Clausius' devel-
opment required postulates, as all developments of thermo-
dynamics do; and ( i i )  although his approach based on
equivalence of transformations is rigorous and general, i t
provides little indication of what the state function entropy
represents.

Clausius' other approach to entropy had microscopic un-
derpinnings through the concept of disgregation.
3° H e  j u s t i -fied this less general approach on the grounds that the first
approach "retains an abstract form, which is embraced with
difficulty by the mind, and we feel compelled to look for the
precise physical cause, of which (the Clausius inequality) is
a consequence." Disgregation was defined as "the degree of
dispersion of the body," where dispersion refers to the spa-
tial arrangement of molecules. As examples, Clausius cited
that disgregation increases in going from the solid to liquid
to vapor phases. He postulated that disgregation is a state
function, which he denoted by Z. Through a set of postulates,
he related Z to the entropy S via the expression

dS=-
- 
d
H
I T  
d
Z
.  
(
2
6
)

In Eq. (26) H is the "heat in a body" (a remnant of caloric
theory) which was assumed to be solely a function of tem-
perature. Equation (26) shows that entropy changes can be
attributed to  changes in  molecular kinetic energy plus
changes in the degree of spatial dispersion. In terms of the
present analysis, energy sharing is involved in both terms of
Eq. (26), while energy spreading seems to be confined to the
volume-dependent second term.

Despite the fact that Clausius' development in terms of
disgregation gives a more clear picture of the physical sig-
nificance of entropy than his more general, but abstract, de-
velopment, the disgregation concept has largely died, and
does not appear in most thermodynamics books. This is evi-
dently because Clausius' disgregation-based theory led him
to an incorrect result on specific heats, and he therefore de-
leted disgregation from the second edition of his book on the
mechanical theory of heat.
31 C l a u s i u s  
p l a n n e d  
t o  
r e t u r
n  
t o

disgregation in a third volume, but did not live to do so.
Subsequently, the development of the canonical ensemble

formalism of classical statistical mechanics by Boltzmann
and Gibbs showed that entropy can be decomposed into two
terms that correspond precisely to those on the right side of
Eq. (26). The first comes from momentum integrals involv-
ing the kinetic energy, and is the same for all monatomic
systems. The second term comes from the configurational
integrals involving the intermolecular potential energy, and
can vary for different systems. Unfortunately Clausius did
not foresee this corroboration of his insight.

The concept of disgregation seems akin to that of energy
spreading and sharing, especially that of spreading. How-
ever, disgregation is a more limited concept than energy
spreading and sharing, which is central in both terms on the
right side of Eq. (26), while disgregation is confined to the
second term. The main link between the present approach to
entropy and Clausius' disgregation approach is that both pro-
vide physical pictures of entropy that can be used to shed
light on more rigorous, but abstract, developments of the
subject.
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ergy spreading and sharing depends on the density of the
system’s quantum states, which is known to increase with
particle mass for various model systems, such asideal gases
and Debye solids. Thus we expect S to increase with atomic
mass, subject to the kinds of deviations evident in Figs. 9(a)
and 9(b).

VII. CONNECTIONS WITH CLAUSIUS

We close with abrief discussion of Clausius’ two original
approaches to entropy,and their relationship with the present
approach. The more general of these rested on three funda‑
mental principles: the equivalence of work and heat (i.e., the
first law of thermodynamics), Clausius’s statement of the
second law (discussed in Sec. V), and the law of the equiva‑
lence of transformations. The latter entailed the idea that in
cyclic processes, certain transformations (e.g., heat to work)
are equivalent to other ones (e.g., heat conduction) in awell‑
defined sense. Clausius postulated the existence of numerical
equivalence values for such transformations and used his
“ law of the equivalence of transformations” to ultimately
arrive at what is now called the Clausius inequality and the
entropy function.27‘29 Clausius’ analysis was brilliant, but
the equivalence value idea is difficult to grasp, and is not
even mentioned in most thermodynamics textbooks. The
main points to be emphasized here are: (i) Clausius’ devel‑
opment required postulates, as al l developments of thermo‑
dynamics do; and (ii) although his approach based on
equivalence of transformations is rigorous and general, it
provides little indication of what the state function entropy
represents.
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Clausius’ other approach to entropy had microscopic un‑
derpinnings through the concept of disgregation.30 He justi‑
fied this less general approach on the grounds that the first
approach “retains an abstract form, which is embraced with
difficulty by the mind, and we feel compelled to look for the
precise physical cause, of which (the Clausius inequality) is
aconsequence.” Disgregationwas defined as“the degree of
dispersion of the body,” where dispersion refers to the spa‑
tial arrangement of molecules. As examples, Clausius cited
that disgregation increases in going from the solid to liquid
to vapor phases. He postulated that disgregation is a state
function, which hedenoted by Z. Through aset of postulates,
he related Z to the entropy S via the expression

dS= dH/T+dZ. (26)

In Eq. (26) H is the “heat in a body” (a remnant of caloric
theory) which was assumed to be solely a function of tem‑
perature. Equation (26) shows that entropy changes can be
attributed to changes in molecular kinetic energy plus
changes in the degree of spatial dispersion. In terms of the
present analysis, energy sharing is involved in both terms of
Eq. (26),while energy spreading seems to be confined to the
volume‐dependent second term.
Despite the fact that Clausius’ development in terms of

disgregation gives a more clear picture of the physical sig‑
nificance of entropy than his more general, but abstract, de‑
velopment, the disgregation concept has largely died, and
does not appear in most thermodynamics books. This is evi‑
dently because Clausius’ disgregation-based theory led him
to an incorrect result on specific heats, and he therefore de‑
leted disgregation from the second edition of his book on the
mechanical theory of heat.31 Clausius planned to return to
disgregation in a third volume, but did not live to do so.
Subsequently, the development of the canonical ensemble

formalism of classical statistical mechanics by Boltzmann
and Gibbs showed that entropy can be decomposed into two
terms that correspond precisely to those on the right side of
Eq. (26). The first comes from momentum integrals involv‑
ing the kinetic energy, and is the same for all monatomic
systems. The second term comes from the configurational
integrals involving the intermolecular potential energy, and
can vary for different systems. Unfortunately Clausius did
not foresee this corroboration of his insight.
The concept of disgregation seems akin to that of energy

spreading and sharing, especially that of spreading. How‑
ever, disgregation is a more limited concept than energy
spreading and sharing, which is central in both terms on the
right side of Eq. (26), while disgregation is confined to the
second term. The main link between the present approach to
entropy and Clausius’ disgregation approach is that both pro‑
vide physical pictures of entropy that can be used to shed
light on more rigorous, but abstract, developments of the
subject.
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Fig. 7. (a) DeviceD, that violates the Clausius statement of the second law.
(b) Device Dk that violates the Kelvin—Planck statement of the second law.
Each device would decrease the total degree of energy spreading and shar-
ing in the universe, which is impossible.

degree of energy spreading and sharing approaches a mini-
mum because the amount of energy available to be spread
and shared decreases to a minimum. In effect the third law of
thermodynamics adds one more postulate to those in Secs.
III and IV.

The concept of energy spreading and sharing can help
clarify conventional statements of the second law of thermo-
dynamics and the idea of a maximum heat engine efficiency.
Consider first the Clausius statement of the second law: It is
impossible for any device D, to operate such that its sole
effect is energy transfer from a constant-temperature reser-
voir at T,  to another reservoir at T
h
>  T
c
.  T h e  
t e r m  
" s o l e

effect" implies a cyclic process for the engine itself. I t  is
helpful to consider the two reservoirs as massive bodies that
are identical to one another in all respects except that the one
with temperature T,  stores less energy than the one with
temperature Th. In a violation of the Clausius statement [see
Fig. 7(a)], the degree of energy spreading and sharing in the
low-temperature reservoir would decrease more than that in
the high-temperature reservoir would increase (as implied by
the shape of the S vs U curve in Figs. 4 and 5). This amounts
to a spontaneous diminution of the total degree of energy
spreading and sharing, moving the reservoirs further away
from equilibrium, in violation of postulate (2e).

The Kelvin—Planck statement of the second law is: It is
impossible for any device Dk to operate such that its sole
effect is energy transfer Q from a constant-temperature res-
ervoir at Th and energy delivery in the form of work W=Q,
delivered to a reversible-work source. A  violation of this
statement is illustrated in Fig. 7(b). Were this possible, the
degree o f  energy spreading and sharing i n  the high-
temperature reservoir would decrease, with no compensation
in the (uninvolved) low-temperature reservoir. This violates
postulate (2e).

Next consider a heat engine with heat processes at tem-
peratures T h  a n d  T , < T
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gine is more efficient the smaller Q, is. The Kelvin—Planck
statement rules out the extreme case, for which co c
= 0 .  F o rnonzero Q, i f  Q, is "too small" then the decrease in the Th
reservoir's degree of energy spreading and sharing exceeds
the increase in that for the T,  reservoir, violating postulate
(2e). This limitation gives rise to the maximum efficiency,
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Fig. 8. (a) Phase space trajectory from state A to B. The shaded rectangle
represents the total available phase space volume Cl. (b) The volume per
atom, v , is divided into M= v/A
3 c e l l s ,  e a c h  
t h e  
s i z e  
o f  
a  
w a v e  
p a c k e
t .  
A n

atom's wave packet (dark square) can spread to any of these cells. I f  tem-
perature increases, the cell size decreases and M increases; a temperature
decrease increases the cell size and M decreases.

that this theorem has a simple interpretation: The total degree
of energy spreading and sharing in the two reservoirs cannot
decrease.

VI. MICROSCOPIC CONNECTIONS

Our search for a suitable measure of energy spreading and
sharing has helped us construct a thermodynamics theory
that is equivalent mathematically to the conventional one,
but is based a priori on a physical picture of what the state
function S represents. It is unnecessary to search retrospec-
tively for an interpretation of what entropy "means." Al-
though it is outside the domain of classical thermodynamics,
further understanding can be obtained using a microscopic
approach similar to that in statistical physics. It is simplest
(though not essential) to frame our discussion in terms of a
classical, monatomic, ideal gas with N atoms, each of mass
m, in volume V, and with total energy U. Denoting the vec-
tor momentum of atom i by p, , the internal energy of the gas
can be written as LI = pil2m +13312m + • • •pki2m. At time t
the mechanical state of the gas is known from the displace-
ment and momentum o f  each o f  the N  atoms; i.e.
(r
i 
,
p
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p
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the 6N-dimensional phase space consisting of three displace-
ment and momentum components of each atom.

As time advances, P,  follows a trajectory in the phase
space because atoms move, collide with one another, and
bounce off the walls. In principle, P , can reach any part of
the phase space that is consistent with the atoms all being in
the volume V, with total energy U, as indicated symbolically
in Fig. 8(a). This phase space trajectory represents both the
spatial spreading of atoms and their energies, and energy
sharing between atoms. The total available phase space vol-
ume is
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Fig. 7. (a) DeviceD Cthat violates the Clausius statement of the second law.
(b) DeviceDkthat violates the Kelvin‐Planck statement of the second law.
Each device would decrease the total degree of energy spreading and shar‑
ing in the universe, which is impossible.

degree of energy spreading and sharing approaches a mini‑
mum because the amount of energy available to be spread
and shared decreases to a minimum. In effect the third law of
thermodynamics adds one more postulate to those in Secs.
I I I and IV.

The concept of energy spreading and sharing can help
clarify conventional statements of the second law of thermo‑
dynamics and the idea of a maximum heat engine efficiency.
Consider first the Clausius statement of the second law: It is
impossible for any device DC to operate such that its sole
effect is energy transfer from a constant-temperature reser‑
voir at TCto another reservoir at Th>TC. The term “sole
effect” implies a cyclic process for the engine itself. It is
helpful to consider the two reservoirs asmassive bodies that
are identical to one another in all respects except that the one
with temperature TC stores less energy than the one with
temperature Th. In a violation of the Clausius statement [see
Fig. 7(a)], the degree of energy spreading and sharing in the
low-temperature reservoir would decrease more than that in
the high-temperature reservoir would increase (as implied by
the shape of the S vs U curve in Figs. 4 and 5). This amounts
to a spontaneous diminution of the total degree of energy
spreading and sharing, moving the reservoirs further away
from equilibrium, in violation of postulate (2e).

The Kelvin‐Planck statement of the second law is: It is
impossible for any device Dk to operate such that its sole
effect is energy transfer Q from a constant-temperature res‑
ervoir at Th and energy delivery in the form of work W= Q,
delivered to a reversible-work source. A violation of this
statement is illustrated in Fig. 7(b). Were this possible, the
degree of energy spreading and sharing in the high‑
temperature reservoir would decrease, with no compensation
in the (uninvolved) low-temperature reservoir. This violates
postulate (2c).

Next consider a heat engine with heat processes at tem‑
peratures Th and TC<T,l and generation of work
W=Qh‐QC on an external agent. For a given Qh, the en‑
gine is more efficient the smaller QCis. The Kelvin-Planck
statement rules out the extreme case, for which QC=O. For
nonzero QCif QCis “ too small” then the decrease in the Th
reservoir’s degree of energy spreading and sharing exceeds
the increase in that for the Tc reservoir, violating postulate
(2c). This limitation gives rise to the maximum efficiency,
17m“ in Carnot’s theorem: nsnmax=1‐TC/Th. The point is
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Fig. 8. (a) Phase space trajectory from state A to B. The shaded rectangle
represents the total available phase space volume 0. (b) The volume per
atom, v, is divided into M =v/)\3 cells, each the size of a wave packet. An
atom’s wave packet (dark square) can spread to any of these cells. If tem‑
perature increases, the cell size decreases and M increases; a temperature
decrease increases the cell size and M decreases.

that this theorem has asimple interpretation: The total degree
of energy spreading and sharing in the two reservoirs cannot
decrease.

VI. MICROSCOPIC CONNECTIONS

Our search for a suitable measure of energy spreading and
sharing has helped us construct a thermodynamics theory
that is equivalent mathematically to the conventional one,
but is based a priori on a physical picture of what the state
function S represents. It is unnecessary to search retrospec‑
tively for an interpretation of what entropy “means.” Al‑
though it is outside the domain of classical thermodynamics,
further understanding can be obtained using a microscopic
approach similar to that in statistical physics. It is simplest
(though not essential) to frame our discussion in terms of a
classical, monatomic, ideal gas with N atoms, each of mass
m, in volume V, and with total energy U Denoting the vec‑
tor momentum of atom i2by p, , the internal energy of the gas
can be written as U=‐p1/2m+p2/2m+ pN/Zm. At time t
the mechanical state of the gas is known from the displace‑
ment and momentum of each of the N atoms; i.e.
(rl,p1,r2,p2,...,rN,pN). This represents a single point, P, , in
the 6N-dimensional phase space consisting of three displace‑
ment and momentum components of each atom.

As time advances, P, follows a trajectory in the phase
space because atoms move, collide with one another, and
bounce off the walls. In principle, P, can reach any part of
the phase space that is consistent with the atoms all being in
the volume V, with total energy U, asindicated symbolically
in Fig. 8(a). This phase space trajectory represents both the
spatial spreading of atoms and their energies, and energy
sharing between atoms. The total available phase space vol‑
ume 18
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body 2's energy gain of 0.5U*, the shape of S vs U assures
that its increased degree of energy spreading and sharing,
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degree of energy spreading and sharing. Bodies 2 and 1 at-
tain the equilibrium states a and b, respectively. Equations
(5)—(7) show that when body 1 has energy U* and body 2
has energy 2U*, the two curves in Fig. 5 have equal slopes,
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For the constant volume heat processes we have been dis-
cussing, zero work is done on the system. For an infinitesi-
mal energy transfer, the first law of thermodynamics is dU
= 8Q and the relationship ( o S I 9 U )
v
= 1 1 T  i m p l i e s  
d S

=dUIT or

dS= V I I '  along a constant-volume path. ( 8 )
SQ is the infinitesimal heat to the body, whose temperature
is T, altering its degree of energy spreading and sharing by
dS. The notation 8Q rather than dQ is a reminder that heat
is not a state function but rather a path-dependent energy
transfer.

There is a subtlety associated with Eq. (8), which holds
along finite, constant-volume paths. These paths must consist
solely of equilibrium states, as illustrated in Figs. 4 and 5
because only then is the temperature in Eqs. (6) and (8) a
well-defined property. Physically, a  path o f  equilibrium
states requires an infinitely slow process which, in principle,
requires an infinite sequence of energy reservoirs, each with
a temperature slightly different from the last. Such processes
can be reversed using the sequence of reservoirs in the re-
verse order and thus (8) can be rewritten

dS= 8Q„,IT along a reversible constant-volume path.
(
9
)

Although real heat processes can pass through nonequilib-
rium states, Eq. (9) enables the calculation of AS between
initial and final equilibrium states for such processes.

Our next task is to consider how S varies with the volume
V. Using the first law of thermodynamics for infinitesimal
variations at constant particle number N,

dU= SQ-1- SW. ( 1 0 )

As usual, the terms on the right side are both path dependent,
while their sum, and thus the left side, is path independent.
We assume S =S(U, V) and that work is done only via vol-
ume changes. Inverting S(U, V) to get U= U(S, V), it fol-
lows that

dU= (aU d S )
v
d S  
( d 1 1  
I  
a V )
s
d V

=-- TdS d V )
s
d V .  
(
1
1
)

The first term in the last line follows from Eq. (6). Applying
Eqs. (10) and (11) to the same process, we can eliminate dU,
to obtain

dS= SQ1T-E[814T—(8111c9V)
s
dV]IT. ( 1 2 )

We now examine four important special cases of Eq. (12).
Case 1. Constant-volume pure heat process. Here, 8W=0

and d V=0, giving Eq. (9). The caveat preceding Eq. (9)
applies.

Case 2. Slow adiabatic volume change. Here, 8Q =O. For
a compression, two opposing effects occur: (i) positive ex-
ternal work on the system increases its energy, tending to
increase S, but (ii) the volume reduction decreases the avail-
able space over which energy can spread, tending to decrease
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(a) (b)

Fig. 6. (a) Cylinder with a movable piston. The interior can contain a gas or
a compressed spring. (b) Cylinder containing a coiled spring, compressed to
length L= x
o
— x  
w h e r
e  x
o  
i s  
i t
s  
e q u
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r i u
m  
l e
n g
t h
.

S. For an expansion, similar opposing effects occur. The
question is: Which of these effects dominates?

For an infinitely slow volume change, the external pres-
sure p
ex
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system differ by an arbitrarily small amount and the external
work done on the system is

SW = —
P e x t d
i
l
=  
—  
(
1
3
)

The first law reduces to dU=3147rev= p d V,  and Eq. (12) —
becomes

dS= —[p+ (AI I o V )
s
] d V.  
( 1 4
)

Equations (13) and (14) show how S varies with V for a
slow, adiabatic volume change. To pin down S further, we
must specify more about W I  aV)
s
.

Consider the process in Fig. 6(a), which depicts a cylinder
with a movable piston. An external force F is needed to keep
the piston in equilibrium and the corresponding pressure is
p=FIA, where A is the piston area. Suppose the cylinder
contains a coiled spring, as shown in Fig. 6(b). For this sys-
tem, a slow compression is a pure-mechanics process, for
which t he  system energy can  b e  written U ( S ,  V)
= k
s
[ x
o
—  
(
V
/
A  
)
]
2
/
2
,  
w
h
e
r
e  
l
c
,  
i
s  
t
h
e  
s
p
r
i
n
g  
c
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t
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n
t
,  
a
n
d

V/A is the cylinder length. The quantity in square brackets is
the deviation from the spring's equilibrium length, x
o
.  T h i s
shows that U is independent of S and

— ( d U l d V )
s
= k
s
[ x
0
— ( V I A ) ] /
A = F I A = p
.

For this process, Eq. (14) reduces to dS =0, which is consis-
tent with the view that in pure mechanics, the degree of
energy spreading and sharing does not vary.

This is also consistent with the result in Ref. 1 that an
infinitely slow volume change induces exactly compensating
effects on the classical action (which is closely related to S)
from the energy increase and volume decrease that leave the
action function unchanged. The invaraiance was linked to the
symmetry o f  reversibility associated with slow volume
changes. We generalize this, requiring that the total degree
of energy spreading and sharing is conserved under slow,
reversible, adiabatic volume changes, i.e.,

dS= 0 for a slow, adiabatic volume change. (
1 5
)
*

Equation (14) and postulate (15) imply
c9V)
s
. 
(
1
6
)

Postulate (15) means that if an adiabatic expansion is suffi-
ciently slow, the increased energy spreading and sharing as-
sociated with the volume change is exactly offset by the de-
creased energy spreading and sharing from the concomitant

H. S. Leff 1 2 6 6

body 2’s energy gain of 0.5U*, the shape of S vs U assures
that its increased degree of energy spreading and sharing,
ASZ, exceeds the magnitude, [AS1], of body 1’s decreased
degree of energy spreading and sharing. Bodies 2 and 1 at‑
tain the equilibrium states a and b, respectively. Equations
(5)‐(7) show that when body 1 has energy U* and body 2
has energy 2U*, the two curves in Fig. 5 have equal slopes,
i.e., T1= T2 as expected. This completes this example.

For the constant volume heat processes we have been dis‑
cussing, zero work is done on the system. For an infinitesi‑
mal energy transfer, the first law of thermodynamics is dU
= (SQ and the relationship (dS/dU)V= l/T implies dS
=d U/ T or

dS=5Q/T along a constant‐volume path. (8)
5Q is the infinitesimal heat to the body, whose temperature
is T, altering its degree of energy spreading and sharing by
dS. The notation (SQ rather than dQ is a reminder that heat
is not a state function but rather a path-dependent energy
transfer.

There is a subtlety associated with Eq. (8), which holds
along finite, constant-volume paths. These paths must consist
solely of equilibrium states, as illustrated in Figs. 4 and 5
because only then is the temperature in Eqs. (6) and (8) a
well-defined property. Physically, a path of equilibrium
states requires aninfinitely slow process which, in principle,
requires an infinite sequence of energy reservoirs, each with
a temperature slightly different from the last. Such processes
can be reversed using the sequence of reservoirs in the re‑
verse order and thus (8) can be rewritten

dS= 5QreV/T along a reversible constant-volume path.
(9)

Although real heat processes can pass through nonequilib‑
rium states, Eq. (9) enables the calculation of AS between
initial and final equilibrium states for such processes.

Our next task is to consider how S varies with the volume
V. Using the first law of thermodynamics for infinitesimal
variations at constant particle number N,

d U = 5g + aw. (10)

As usual, the terms on the right side are both path dependent,
while their sum, and thus the left side, is path independent.
Weassume S=S(U,V) and that work is done only via vol‑
ume changes. Inverting S(U,V) to get U=U (S,V), it fol‑
lows that

dU=(aU/aS)Vds+(aU/aV)sdv
=Tds+(aU/aV)sdv. (11)

The first term in the last line follows from Eq. (6). Applying
Eqs. (10) and (11) to the same process, we can eliminate dU,
to obtain

dS= 5Q/T+ [ aw‐ (aU/aV)SdV]/T. (12)

We now examine four important special cases of Eq. (12).
Case 1. Constant‐volumepure heatprocess. Here, 6W=O

and dV=0, giving Eq. (9). The caveat preceding Eq. (9)
applies.

Case 2. Slow adiabatic volume change. Here, 5Q=0. For
a compression, two opposing effects occur: (i) positive ex‑
ternal work on the system increases its energy, tending to
increase S, but (ii) the volume reduction decreases the avail‑
able space over which energy can spread, tending to decrease
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(a) (b)

Fig. 6. (a) Cylinder with amovable piston. The interior can contain a gas or
acompressed spring. (b) Cylinder containing a coiled spring, compressed to
length L = x 0 ‐ x where x0 is its equilibrium length.

S. For an expansion, similar opposing effects occur. The
question is: Which of these effects dominates?

For an infinitely slow volume change, the external pres‑
sure pext on the system and the internal pressure1)within the
system differ by anarbitrarily small amount and the external
work done on the system is

5W= ‐pex,dV= ‐p d V. (13)
The first law reduces to d U = 5W,ev=‐pdV, and Eq. (12)
becomes

dS= ‐[p+(0U/<9V)s]dV. (14)
Equations (13) and (14) show how S varies with V for a
slow, adiabatic volume change. To pin down S further, we
must specify more about (0U/6V)S.

Consider the process in Fig. 6(a), which depicts a cylinder
with a movable piston. An external force F is needed to keep
the piston in equilibrium and the corresponding pressure is
p=F /A , where A is the piston area. Suppose the cylinder
contains a coiled spring, as shown in Fig. 6(b). For this sys‑
tem, a slow compression is a pure-mechanics process, for
which the system energy can be written U(S,V)
=k,[x0‐(V/A")]2/2, where k, is the spring constant, and
WA is the cylinder length. The quantity in square brackets is
the deviation from the spring’s equilibrium length, x0. This
shows that U is independent of S and

‐ (aU/aV)S=kS[xO‐ (V/A)]/A =F/A = p .

For this process, Eq. (14) reduces to dS =0, which is consis‑
tent with the View that in pure mechanics, the degree of
energy spreading and sharing does not vary.

This is also consistent with the result in Ref. 1 that an
infinitely slow volume change induces exactly compensating
efi‘ects on the classical action (which is closely related to S)
from the energy increase and volume decrease that leave the
action function unchanged. The invaraiance was linked to the
symmetry of reversibility associated with slow volume
changes. We generalize this, requiring that the total degree
of energy spreading and sharing is conserved under slow,
reversible, adiabatic volume changes, i.e.,

dS=0 for a slow, adiabatic volume change. (15)*

Equation (14) and postulate (15) imply
p=‐(z9U/(9V)s. (16)

Postulate (15) means that if an adiabatic expansion is suffi‑
ciently slow, the increased energy spreading and sharing as‑
sociated with the volume change is exactly offset by the de‑
creased energy spreading and sharing from the concomitant
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corresponding interaction energy is negligible. Together with
the assumptions of energy additivity and homogeneity, this
implies that the two subvolumes have internal energies X U
and (1— X)U, respectively. Using analogous reasoning, it is
reasonable to expect that the degree of energy spreading and
sharing i n  these two subvolumes i s  XS(U,V,N) and
(1— X)S(U,V,N), respectively, and we therefore require that

(2d)*S (XU ,XV ,XN)= XS (U ,V ,N) f o r  X>0.

We removed the restriction X<1 because i f  postulate (2d)
holds for X<1, then writing U '  = X U, V '  = X V, N
I  = X N ,and X
1
= 1 /
X ,  
w
e  
h
a
v
e  
S
(
X
'
U
' ,
X  
'
1
/
1
,
X
'
N
' )  
=
X
'  
S
(
U
r  
,
V
?  
,

N') with X' >1. Postulate (2d) is called extensivity and S is
called an extensive, or homogeneous, thermodynamic vari-
able.

Our assumptions above exclude systems for which long-
range interactions such as gravity are dominant,
15 a n d  o u rfunctions S and U must scale linearly with changes in the
energy, size, and amount. In contrast, for example, a com-
mon intensive variable is the volume per particle, v V I N ,
with the property v (X U, X V, XN)= v(U, V,N), i.e., v is in-
variant when a system is scaled upward or downward in
energy, size, and amount of material. Such invariance is the
defining property of an intensive variable.

Next, consider a composite system consisting of two bod-
ies which, initially, are constrained from interacting with one
another. When the constraint is removed the two bodies ex-
change energy. How much energy will each of the bodies
have when equilibrium is reached? To answer this question,
we formalize our main postulate, which was alluded to
above. This is the principle that the total degree of energy
spreading and sharing becomes as large as possible in equi-
librium. To assure that all energy exchanges are accounted
for, we restrict this postulate to energetically isolated sys-
tems:

When a constraint is removed in an energetically isolated
n-body system with

u=E u
i
, 
v -
E

i=1 i = 1 N = 1  N
i
,  ,

i=1

then in equilibrium, the set I U
i ,  V
i  i s  
s u c h  
t h a t

S(U,V,N)= E,=1
is maximized relative to the remaining constraints. ( 2 e ) *

Examination of some simple processes illustrates several
of these postulates. Suppose a ball is initially constrained to
a fixed position above ground level. Upon removal of the
constraint, the ball drops to the ground, bounces, and comes
to rest. The kinetic energy, K
o
,  o f  t h e  
b a l l  
j u s t  
b e f o r e  
i t s  
f i r s
t

bounce is transferred to the innards of the ball, earth, and air
in ways that are impossible to follow in the realm of mechan-
ics. The additional internal energy is spread and shared
within each; i.e., A U b
a
l l > 0 ,  U
e a r t
h > 0 ,  
a n d  
U
a
i
r
> 0 ,  
a n
d

postulate (2a) implies A S
b a l l
> 0 ,  A S  
e a r t
h > 0 ,  
a n d  
A  
S  a
i
r
> 0 .
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earth, and  a i r,  respectively? Postulate (2c)  implies
Stotai=Sball+Searth+Sair, and postulate (2e) requires S
t o t a t  t otake on its maximum possible value at equilibrium; i.e.,
AStotal
= 
S b a
l l
+  
S e
a r
t h  
A
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occurs for a  unique set o f  energy differences, A  U
b a t i  ,ZWeanha n d  t W
a i
„  w h i c
h  
a n s w
e r s  
t h
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q u e
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above. In classical mechanics, one considers the idealization
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of perfectly elastic collisions that enable a ball to bounce
endlessly. Indeed, such "pure mechanics" can be viewed as
a subset of thermodynamics for which there is zero change in
the degree of energy spreading and sharing, and S is con-
stant.

A very different example is a heat process. Consider two
bodies that are identical except that one is hot and the other
cold [see Fig. 3(3)]. When an insulating barrier between
them is removed, we know from experience that an equilib-
rium state will be reached for which the bodies have equal
temperatures. Furthermore because these bodies are identi-
cal, this must occur when they have equal internal energies.
During the heat process, the hotter body suffers an energy
change, A U
h
< 0  
a n d  
p o s t
u l a t
e  
( 2
a )  
i m
p l
i e
s  
t
h
a
t  
A S
6
< 0
.  
T
h
e

degree of energy spreading and sharing decreases as the hot-
ter body loses energy. The cooler body gains energy A U,>0
and, from postulate (2a), AS,>0. Postulates (2c) and (2e)
require that AS, + AS
h > 0  o r  
A S , >  
A S
h  
T h
e  
l a t t
e r  
i n
-

equality tells us that the increase in the cooler body's degree
of energy spreading and sharing exceeds the decrease in the
hotter body's. This seems reasonable (though not obvious)
because the cooler body has more unoccupied storage
modes, and we might expect i t  to experience a greater
change in its degree of energy spreading and sharing. Similar
behavior occurred in the one-particle gas in Ref. 1.

It is interesting to ask what would happen i f  the energy
transfer in Fig. 3(b) somehow proceeded past the equal tem-
perature point. In such a case, states for which the right side
is hotter than the left side would occur, but these are mirror
images of states that did not emerge as equilibrium states
with the left side hotter than the right side. Therefore they are
ruled out as equilibrium states. The equilibrium state, with
equal temperatures, is special in that it has no mirror image.
Postulate (2e) tells us that Stotal is maximum for this special
state and is less than maximum whenever the two bodies
have different temperatures. A similar property was found
for the mechanical model in Ref. 1. For heat processes be-
tween nonidentical bodies, the postulates are less transparent
(because of the lack of symmetry), but provide an equally
powerful mathematical criterion for thermodynamic equilib-
rium.

IV. AN ALGORITHM FOR FINDING S

Our objective in this section is to obtain an algorithm that
enables the determination of S. We first show that the com-
bination of the additivity property of S and the principle of
maximum energy spreading and sharing imply that S has a
negative second derivative with respect to U. To see this
consider two identical bodies, as in Fig. 3(b), each with N
particles and volume V, but with differing internal energies,
U
t 
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U
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ergy, with V and N constant in each sample, the final U and
S must be the same for the two samples because the systems
are identical. That is, U
t  U
f  ,  
U 2  
U f  
,  
S  
1 (  
U t  
,  
V , N
)

—>S( U , V, N ) ,  and 5
2
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( t  
f  ,
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ously, from postulate (2a), S
1 i n c r e a s e s  
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S 2  
d e c r e a s
e s .

Postulate (2e) implies
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•

(3b)
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corresponding interaction energy is negligible. Together with
the assumptions of energy additivity and homogeneity, this
implies that the two subvolumes have internal energies ) \ U
and (1‐k)U, respectively. Using analogous reasoning, it is
reasonable to expect that the degree of energy spreading and
sharing in these two subvolumes is AS(U,V,N) and
(1‐)\)S(U,V,N), respectively, and we therefore require that

S()\U,)\V,)\N)=)\S(U,V,N) for K>O. (2d)*

We removed the restriction A<1 because if postulate (2d)
holds for k<1, then writing U’=)\U, V’=) \V, N’=) \N,
and A’=1/)\, wehave S()t'U’,)\’V’,)\’N’) =A’S(U',V’,
N ’ ) with h’>1. Postulate (2d) is called extensivity and S is
called an extensive, or homogeneous, thermodynamic vari‑
able.
Our assumptions above exclude systems for which long‑

range interactions such as gravity are dominant,15 and our
functions S and U must scale linearly with changes in the
energy, size, and amount. In contrast, for example, a com‑
mon intensive variable is the volume per particle, vEV/N,
with the property v()\U,)\V,)\N)=v(U,V,N), i.e., v is in‑
variant when a system is scaled upward or downward in
energy, size, and amount of material. Such invariance is the
defining property of an intensive variable.
Next, consider a composite system 00nsisting of two bod‑

ies which, initially, are constrained from interactingwith one
another. When the constraint is removed the two bodies ex‑
change energy. How much energy will each of the bodies
have when equilibrium is reached? To answer this question,
we formalize our main postulate, which was alluded to
above. This is the principle that the total degree of energy
spreading and sharing becomes as large aspossible in equi‑
librium. To assure that all energy exchanges are accounted
for, we restrict this postulate to energetically isolated sys‑
terns:
When a constraint is removed in an energetically isolated

n-body system with
n I1 n

U=2 U,, V=2 vi , N=21Ni,,
i = 1 i = 1 i =

then in equilibrium, the set {U ,-,V,~ ,Ni} is such that

S(U.V,N)=2 S.(U..v.-.N.->
i = 1

is maximized relative to the remaining constraints. (2e)*
Examination of some simple processes illustrates several

of these postulates. Suppose aball is initially constrained to
a fixed position above ground level. Upon removal of the
constraint, the ball drops to the ground, bounces, and comes
to rest. The kinetic energy, K0, of the ball just before its first
bounce is transferred to the innards of the ball, earth, and air
in ways that are impossible to follow in the realmof mechan‑
ics. The additional internal energy is spread and shared
within each; i.e., AUban>O, AUemh>0, and AUair>0, and
postulate (2a) implies ASban>O, ASemh>0, and ASair>0.
How much of K0 becomes final internal energy of the ball,
earth, and air, respectively? Postulate (20) implies
Smm=Sbfl1+Semh+Sain and postulate (2e) requires Smmto
take on its maximum possible value at equilibrium; i.e.,
ASwtal=ASbau+ASemh+ASair is maximized. This evidently
occurs for a unique set of energy differences, AUbau,
AU cam ] , and AUair, which answers the question posed
above. In classical mechanics, one considers the idealization
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of perfectly elastic collisions that enable a ball to bounce
endlessly. Indeed, such “pure mechanics” can be viewed as
asubset of thermodynamics for which there is zero change in
the degree of energy spreading and sharing, and S is con‑
stant.
A very different example is a heat process. Consider two

bodies that are identical except that one is hot and the other
cold [see Fig. 3(b)]. When an insulating barrier between
them is removed, we know from experience that an equilib‑
rium state will be reached for which the bodies have equal
temperatures. Furthermore because these bodies are identi‑
cal, this must occur when they have equal internal energies.
During the heat process, the hotter body suffers an energy
change, AUh<0 and postulate (2a) implies that ASh<O. The
degree of energy spreading and sharing decreases asthe hot‑
ter body loses energy. The cooler body gains energy AUC>0
and, from postulate (23), ASC>0. Postulates (2c) and (2e)
require that ASC+ASh>O or ASC>‐AS,,. The latter in‑
equality tells us that the increase in the cooler body’s degree
of energy spreading and sharing exceeds the decrease in the
hotter body’s. This seems reasonable (though not obvious)
because the cooler body has more unoccupied storage
modes, and we might expect it to experience a greater
change in its degree of energy spreading and sharing. Similar
behavior occurred in the one‐particle gas in Ref. 1.
It is interesting to ask what would happen if the energy

transfer in Fig. 3(b) somehow proceededpast the equal tem‑
perature point. In such a case, states for which the right side
is hotter than the left side would occur, but these are mirror
images of states that did not emerge as equilibrium states
with the left side hotter than the right side. Therefore they are
ruled out as equilibrium states. The equilibrium state, with
equal temperatures, is special in that it has no mirror image.
Postulate (2e) tells us that Stotal is maximum for this special
state and is less than maximum whenever the two bodies
have different temperatures. A similar property was found
for the mechanical model in Ref. 1. For heat processes be‑
tween nonidenticalbodies, the postulates are less transparent
(because of the lack of symmetry), but provide an equally
powerful mathematical criterion for thermodynamic equilib‑
r l u m .

I V.AN ALGORITHM FOR FINDINGS

Our objective in this section is to obtain analgorithm that
enables the determination of S. We first show that the com‑
bination of the additivity property of S and the principle of
maximum energy spreading and sharing imply that S has a
negative second derivative with respect to U. To see this
consider two identical bodies, as in Fig. 3(b), each with N
particles and volume V, but with differing internal energies,
U1 and U2>U1. From inequality (2a), S2(U2,V,N)
>S 1(U 1,V,N). If the two systems are allowed to share en‑
ergy, with V andN constant in each sample, the final U and
S must be the same for the two samples because the systems
are identical. That is, U1‐>Uf, U2‐>Uf, S1(U1,V,N)
‐>Sf(Uf,V,N), and SZ(U2,V,N) ‐‐>Sf(Uf,V,N). Obvi‑
ously, from postulate (2a), S1 increases and $2 decreases.
Postulate (2e) implies

S1(U1asz)+SZ(U2’V’N)SZSf(Uf7VsN)r (33)
where

Uf:%(U1+U2)- (3b)
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V, we illustrate several ways the concept of energy spreading
and sharing can be used to enhance the teaching and learning
of thermodynamics. In Sec. VI, we show how a microscopi-
cally based realization of S can be obtained and how the
notion of energy spreading and sharing can shed light on
statistical entropy. Finally, in Sec. VII we close with brief
remarks on Clausius' development of entropy and its rela-
tionship with the present approach.

WHY SEEK A NEW APPROACH TO ENTROPY?

In traditional textbook developments of thermodynamics,
entropy is "discovered" using the Clausius and/or Kelvin—
Planck forms of the second law of thermodynamics in the
context of heat engines. This entails clever mathematical ma-
nipulations involving the concept of reversibility and the
definition o f  thermodynamic temperature.
2 T h e  d e f i n i n gequation for entropy in that approach is the well-known
equation,

TCVdS T (1)

where dS is the entropy change of a system at absolute tem-
perature T during a reversible heat process for which 80 rev
is the energy added to the system.

It is gross understatement to say that students have diffi-
culty grasping the traditional approach. The arguments lead-
ing to it are subtle and sophisticated and the resulting Eq. (1)
has no evident physical meaning. Furthermore because en-
tropy changes can occur for irreversible processes even when
SQ =0, Eq. (1) causes considerable student confusion. This
is exacerbated when students learn subsequently that entropy
is supposed to represent a measure of "disorder," an inter-
pretation that is entirely mysterious within the context of Eq.
(1), and is unsatisfactory in some ways?

Various alternatives to the latter traditional approach exist.
For example, Landsberg uses the mathematically elegant
Caratheodory approach, and Macdonald provides a new,
succinct development o f  the second law.' A  popular ap-
proach by Callen develops thermodynamics using a set of
postulates involving internal energy and entropy.' Although
these approaches are all sound mathematically, none pro-
vides a compelling physical picture of entropy.

Another way around the subtleties of classical thermody-
namics is to use a microscopically based statistical approach
to develop thermodynamics.
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excellent physical picture of entropy, and is favored by many
teachers, it requires considerable mathematical sophistication
(probability theory, ensembles, combinatorics), and the
mathematics can distract students from the physics. Studying
classical thermodynamics first can focus on the physics fun-
damentals, illustrate the beauty and generality of the subject,
and prepare students well for the subsequent study of statis-
tical mechanics.

In 1992 Baierlein
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thermodynamics, asking: "Why do authors lead students
through the labyrinth of  Camot cycles and the attendant
19th-century phenomenology before introducing a micro-
scopic notion of entropy...? Why not reverse the order?" He
himself subsequently suggested a thoughtful and useful way
to do this at the introductory leve1.
11 B a i e r l e i n ' s  
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spired a proposal for a formulation based upon the mixing
(i.e., spreading and sharing) of energy within matter,
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Fig. 1. Stored energies for a pair of gas molecules i and j. Each molecule
stores translational (tr), rotational (rot), and vibrational (vib) energies. The
two atoms store intermolecular potential energy that depends upon their
separation, E n e r g y  is shared within the various shaded regions.

this article brings that proposal to fruition. In a sense the
approach here provides a rationale for Callen's otherwise
abstract postulates,' and extends Rodewald's idea of using
the homogeneity concept to help understand entropy.
°

ENERGY SPREADING AND SHARING

The approach here extends ideas elucidated by Denbigh
l
"

in 1961: "As soon as it is accepted that matter consists of
small particles which are in motion it becomes evident that
every large-scale natural process is essentially a process of
mixing, if this term is given a rather wide meaning. In many
instances the spontaneous mixing tendency is simply the in-
termingling of the constituent particles, as in interdiffusion
of gases, liquids and solids... Similarly, the irreversible ex-
pansion of a gas may be regarded as a process in which the
molecules become more completely mixed over the available
space... In other instances it is not so much a question of a
mixing of the particles in space as of a mixing or sharing of
their total energy."

The present work builds upon these notions using a model
in which energy spreads throughout matter and is shared by
the atomic constituents of that matter. While Denbigh's re-
marks were directed at processes, we consider the degree of
energy spreading and sharing to be a property of equilibrium
states. An essential postulate is that the degree of energy
spreading and sharing is  maximal when thermodynamic
equilibrium exists. This is based upon the view that equilib-
rium is the result of a process whereby energy seeks out all
available storage modes. For example, when hot and cold
bodies equilibrate, energy is exchanged between them as
much as possible. We take this to mean that the exchange
occurs until the degree of energy spreading and sharing is
maximal. The same is true when a gas fills its available vol-
ume, when a solid attains a uniform temperature, and in fact
whenever thermodynamic equilibrium exists. To express this
mathematically, we postulate the existence of a function S
that represents the degree of energy spreading and sharing.

The energy in a body can be shared by translational, rota-
tional, vibrational, electronic, and intermolecular storage
modes. Figure 1 illustrates an example of this energy sharing
for a pair of diatomic gas molecules, excluding electronic
energy modes. For a monatomic gas, only the translational
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V, we illustrate several ways the concept of energy spreading
and sharing can beused to enhance the teaching and learning
of thermodynamics. In Sec. VI, we show how amicroscopi‑
cally based realization of S can be obtained and how the
notion of energy spreading and sharing can shed light on
statistical entropy. Finally, in Sec. V I I we close with brief
remarks on Clausius’ development of entropy and its rela‑
tionship with the present approach.

I I . WHY SEEK A NEW APPROACH TO ENTROPY?

In traditional textbook developments of thermodynamics,
entropy is “discovered” using the Clausius and/or Kelvin‑
Planck forms of the second law of thermodynamics in the
context of heat engines. This entails clever mathematical ma‑
nipulations involving the concept of reversibility and the
definition of thermodynamic temperature. The defining
equation for entropy in that approach is the well-known
equation,

(SQrevdS= T , (1)

where dS is the entropy change of a system at absolute tem‑
perature T during a reversible heat process for which 5Qrev
is the energy added to the system.
It is gross understatement to say that students have diffi‑

culty grasping the traditional approach. The arguments lead‑
ing to it are subtle and sophisticated and the resultingEq. (1)
has no evident physical meaning. Furthermore because en‑
tropy changes can occur for irreversible processes evenwhen
6Q=0, Eq. (1) causes considerable student confusion. This
is exacerbated when students learn subsequently that entropy
is supposed to represent a measure of “disorder,” an inter‑
pretation that is entirely mysterious within the context of Eq.
(1), and is unsatisfactory in some ways.
Various alternatives to the latter traditional approach exist.

For example, Landsberg uses the mathematically elegant
Carathéodory approach, and Macdonald 5provides a new,
succinct development of the second law. A popular ap‑
proach by Callen develops thermodynamics usin6g a set of
postulates involving internal energy and entropy. Although
these approaches are all sound mathematically, none pro‑
vides a compelling physicalpicture of entropy.
Another way around the subtleties of classical thermody‑

namics is to use amicroscopically based statistical approach
to develop thermodynamics.9Although this provides an
excellent physical picture of entropy, a n dis favored by many
teachers, it requires considerable mathematical sophistication
(probability theory, ensembles, combinatorics), and the
mathematics can distract students from the physics. Studying
classical thermodynamics first can focus on the physics fun‑
damentals, illustrate the beauty and generality of the subject,
and prepare students well for the subsequent study of statis‑
tical mechanics.
In 1992 Baierlein10 solicited ideas for new approaches to

thermodynamics, asking: “Why do authors lead students
through the labyrinth of Carnot cycles and the attendant
19th-century phenomenology before introducing a micro‑
scopic notion of entropy...? Why not reverse the order?” He
himself subsequently suggested a thoughtful and useful way
to do this at the introductory level.11Baierlein’s request in‑
spired a proposal for a formulation based upon the mixing
(i.e., spreading and sharing) of energy within matter,12 and
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Fig. 1. Stored energies for a pair of gas molecules i and j. Each molecule
stores translational (tr), rotational (rot), and vibrational (vib) energies. The
two atoms store intermolecular potential energy that depends upon their
separation, r i j . Energy is shared within the various shaded regions.

this article brings that proposal to fruition. In a sense the
approach here provides a rationale for Callen’s otherwise
abstract postulates,6 and extends Rodewald’s idea of3using
the homogeneity concept to help understand entropy.

I I I . ENERGY SPREADING AND SHARING

The approach here extends ideas elucidated by Denbigh14
in 1961: “ A s soon as it is accepted that matter consists of
small particles which are in motion it becomes evident that
every large-scale natural process is essentially a process of
mixing, if this term is given a rather wide meaning. In many
instances the spontaneous mixing tendency is simply the in‑
termingling of the constituent particles, as in interdiffusion
of gases, liquids and solids... Similarly, the irreversible ex‑
pansion of a gas may be regarded as a process in which the
molecules becomemore completely mixed over the available
space... In other instances it is not so much a question of a
mixing of the particles in space asof amixing or sharing of
their total energy.”
The present work builds upon these notions using amodel

in which energy spreads throughout matter and is shared by
the atomic constituents of that matter. While Denbigh’s re‑
marks were directed atprocesses, we consider the degree of
energy spreading and sharing to be aproperty of equilibrium
states. An essential postulate is that the degree of energy
spreading and sharing is maximal when thermodynamic
equilibrium exists. This is based upon the view that equilib‑
rium is the result of a process whereby energy seeks out all
available storage modes. For example, when hot and cold
bodies equilibrate, energy is exchanged between them as
much aspossible. We take this to mean that the exchange
occurs until the degree of energy spreading and sharing is
maximal. The same is true when a gasfills its available vol‑
ume, when a solid attains a uniform temperature, and in fact
whenever thermodynamic equilibrium exists. To express this
mathematically, we postulate the existence of a function S
that represents the degree of energy spreading and sharing.
The energy in a body can be shared by translational, rota‑

tional, vibrational, electronic, and intermolecular storage
modes. Figure 1 illustrates anexample of this energy sharing
for a pair of diatomic gas molecules, excluding electronic
energy modes. For a monatomic gas, only the translational
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