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there is no evident increase in “disorder,” and the disorder 
metaphor is misleading. The upshot is that the disorder meta-
phor is unacceptable as a general interpretive tool, which has 
given rise to various critiques.8−15 

Key Point 5.1:  Disorder is generally an unacceptable meta-
phor for entropy. It gives the misimpression that entropy is 
governed by spatial or orientational regularity rather than the 
distribution of energy over the system’s volume and spreading 
over accessible microstates. The disorder metaphor is not con-
sistent with either the Clausius or Boltzmann entropy forms, 
each of which entails energy.

• Is entropy a measure of uncertainty? Missing 
information? Yes, for both. The Boltzmann entropy S = 
k lnW can be interpreted as a measure of uncertainty or, 
more specifically, missing information. Suppose a set of W 
possible microstates has probabilities {P1, P2 . . . }, where 
0  Pi  1 is the probability for microstate i, i = 1, . . . W, 
and the sum of all probabilities equals one. Using methods 
from information theory, one can obtain a “least-biased” 
estimate of the individual probabilities.16 

This is done by finding the set of probabilities that maxi-
mizes the Shannon missing information function, MI  
−c[P1 ln P1 + P2 ln P2 + . . . PW ln PW] relative to known 
constraints, where c = constant. If the only constraint is that 
the sum of the probabilities is unity, the results of this pro-
cedure are: Pi = 1/W for all i, and MI = −cW(1/W) ln(1/W) 
= c lnW. Further, if the arbitrary constant c is chosen to be 
k, Boltzmann’s constant, the Shannon missing information 
function MI is identical to the Boltzmann entropy, S = k lnW. 
Therefore, we interpret S as a measure of missing informa-
tion—i.e., uncertainty. 

Key Point 5.2:  Uncertainty is a good metaphor for entropy. 
This uncertainty is associated with the missing information 
about which of the W microstates with energy E (= U) is 
occupied at any instant. The missing information approach 
provides a way to justify the principle of equal a priori prob-
abilities, namely, the probability of each state being occupied 
is the same, 1/W. This is also related to equity, because no 
microstate is favored over any other. Energy is central here 
because the microstates are energy states.
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Part V ends this five-part paper series.1−4 We discuss the interpretation of entropy as uncertainty and connections 
between spreading and uncertainty. The too commonly used disorder metaphor for entropy is roundly rejected. Finally, a 
generalization of the equity concept that was introduced in Part III is presented. The question-answer format is contin-
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Questions and Answers

• Is entropy a measure of a system’s disorder?  
In general the answer is a firm “no.” A common definition of 
disorder is: a lack of systematic or regular arrangement. This 
has a spatial or orientational connotation and is appropriate 
only when there are clear spatial patterns. For example crys-
talline solids are typically more ordered spatially than gases. 
On the other hand, a sufficiently hot solid, or sufficiently 
large, cold solid, can have a higher entropy than a cool gas; 
spatial order alone does not guarantee low entropy. A proper 
metaphor should entail energy, which is a key ingredient in 
both the Clausius and Boltzmann definitions of entropy.

Introduced by Helmholtz5 and Boltzmann,6 the disorder 
metaphor, unfortunately, has been adopted by many textbook 
authors and researchers. However, dismissing entropy simply 
as “a measure of disorder” ignore’s entropy’s intimate relation-
ship with energy. This is an undesirable oversimplification 
of a profound physical entity. Of course, one certainly can 
envisage ordered motion for molecules all moving in a speci-
fied direction and relatively “disordered” motion for typical 
gas molecules. Yet no single definition of disorder describes 
molecular jiggling, spatial irregularity, orientational ran-
domness, and the expansion of a gas to a larger volume. The 
energy-spreading metaphor can be applied successfully to all 
of these.

Disorder can be an unhelpful or misleading metaphor. For 
example, 2 m3 of copper has twice the entropy of 1 m3 under 
the same external conditions. But the 2 m3 sample is not more 
disordered in any obvious sense. There are more particles in 
the larger sample and more uncertainty about them, but un-
certainty and disorder are very different concepts. The disor-
der metaphor is unhelpful here.

An example of a misuse of the term disorder is a quotation 
from the Encyclopedia of Earth: “The entropy law describes 
the tendency for all objects to rust, break, fall apart, wear out, 
and otherwise move to a less ordered state.” As observed by 
Styer,7 this is misleading because in the reaction for rust, 
4Fe + 3O2 → 2Fe3O3, the entropy change is −549.3 J . K−1. 
This entropy decrease does not support a tendency toward 
disorder of the iron-oxygen system. Because the concomitant 
enthalpy change is −1684 kJ .mol−1, the entropy change of the 
surroundings is 1684 kJ .mol−1/298.15 K = 5650 J. K−1. mol−1; 
i.e., energy spreads from the system to the environment. But 
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in Eq. (1), this would violate the principle of entropy in-
crease. Measurable energy transfers in this “wrong” direction, 
though possible in principle, have such low probabilities that 
they are not observed. A graphic view of “equity” is given in 
Fig. 1.

Key Point 5.3:  For an isolated composite system with two 
subsystems, an equitable energy distribution exists when 
any infinitesimal energy exchange brings equal and opposite 
fractional changes in the numbers of accessible states of the 
subsystems. This signals equity in three ways: (i) the receiving 
and donor systems are on par with one another, with neither 
experiencing a greater fractional change in its number of 
accessible states; (ii) the number of accessible states over which 
the composite system can spread is maximized; away from 
thermodynamic equilibrium, there is less equity in that fewer 
states are accessible—i.e., more are excluded; (iii) the principle 
of equal a priori probability implies that no accessible micro-
state is favored over another.

• How can the meaning of equitable energy distri-
bution be understood generally?  Here, we illustrate 
definitions of equity that are suggested using the Boltzmann 
entropy form. Suppose two subsystems of an isolated com-
posite system exchange an amount of energy via a heat and/
or work process. System 1 gains a small amount of energy 
and system 2 loses an equal amount of energy. Because 
entropy increases with increasing energy, the number of 
accessible microstates for the receiving system increases and 
that for the donor system 2 decreases. Because the number 
of accessible states increases with energy, dW1 > 0 and 
dW2 < 0. And because Si = k lnWi for i = 1, 2, and the total 
number of states for the composite system is Wtot = W1W2 
and Stot = k lnWtot, it follows that Stot = S1 + S2. The second 
law of thermodynamics requires that

                                                                                              (1)
    

tot

Here, fi  0 is the fractional change of the number of states 
in system i, for i = 1, 2. Equation (1) shows that to satisfy 
the second law of thermodynamics, system 1 cannot gain a 
smaller fraction of states than system 2 loses. This assures 
that the total number of microstates of the composite sys-
tem, and thus the total entropy, increase.

Under a small energy exchange that increases the en-
ergy of system 1, energy proceeds to flow in that direction 
provided f1 > f2, and continues until f1 = f2, when thermal 
equilibrium exists. If an energy fluctuation leads to f1 < f2, the 
fluctuation corrects itself—i.e., there is no finite energy flow 
increasing the energy of system 1 because the total number of 
states over which the composite system can spread would de-
crease. This would lower the entropy and violate the second 
law of thermodynamics. If f1 = f2, thermodynamic equilib-
rium exists, and the receiving system increases its number of 
states by the same fraction that the donor system loses.

If a finite energy exchange were to reverse the inequality 
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Fig. 1. Graph showing allowed and disallowed regions 
for an infinitesimal energy transfer from donor system 2 
to receiver system 1, as described in the text. Along the 
45o line, we say there is “equity,” and thermodynamic 
equilibrium exists.
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Notice that if the composite system consists of two identi-
cal systems, the total number of states Wtot = W(E1)W(E2). It 
is straightforward to show that Wtot is maximized for E1 + E2 
= E = constant for E1 = E2 = E/2. This agrees with our earlier 
findings regarding equity.2−3 

Discussion
Relating entropy to spreading is not new. Clausius hinted 

at it with his introduction of disgregation, which was men-
tioned in Part II,2 and others have mentioned the relevance of 
spreading—though typically of particles rather than energy 
per se. Traditionally entropy has been described qualitatively 
in ways that do not entail energy explicitly—e.g., using the 
disorder metaphor, which is rejected here. This is surprising 
given the Clausius algorithm, dS = d̄ Qrev/T, which explicitly 
relates energy and entropy and the Boltzmann form S =
k lnW, in which W is a function of the system energy.

I examined connections between energy and entropy in 
three prior articles17−19 and independently, Lambert8−11 pro-
posed a similar idea. He prefers the term “energy dispersal” 
rather than “spreading,” but the basic idea is the same. Au-
thors of dozens of general and physical chemistry textbooks 
have adopted this concept and purged their books of refer-
ences to disorder. Far better than disorder are the metaphors 
of entropy as spreading (or dispersal) and missing informa-
tion or, equivalently, uncertainty. Together, these metaphors 
can help illuminate entropy. 

Although no metaphor is perfect and oversimplifications 
can mislead,13 both the spreading and missing information 
metaphors highlight the fact that entropy is related to choice. 
Spreading a given amount of energy over a larger volume of 
material or adding more energy to a fixed volume results in 
more accessible microstates—i.e., higher multiplicity.20 This 
results in more choice, namely, the system can spread over 
more states, and there is greater uncertainty—more missing 
information—about which microstate is occupied. Spread-
ing and missing information provide complementary, useful 
views of entropy.21 

A strength of the spreading metaphor is that it explicitly 
entails energy, which lies at the very heart of physics generally 
and thermodynamics in particular. This is explicit in both 
the Clausius and Boltzmann entropy equations. Additionally, 
spatial energy spreading can be related qualitatively to heat 
and work processes, which is aesthetically pleasing. This in-
spires an apt closing poem: 

“S stands for spreading; it’s easy as can be. This  
mnemonic sheds light on entropy.”
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