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It takes energy to heat a substance from near absolute zero 
to standard room temperature, 298.15 K. As heating progresses, 
the substance’s entropy increases from zero (as dictated by the 
third law of thermodynamics) to a standard entropy S° for the 
substance. For each substance, the standard entropy is the sum of 
reversible small increments dH divided by temperature T for the 
heating process. That is, the standard entropy S° is a function of 
the added energy, namely, the total enthalpy ∆H° delivered dur-
ing heating. This energy spreads spatially throughout the solid 
and is stored within it. The entropy function can be usefully 
interpreted as a spreading function, with the symbol S connoting 
spreading, as clarified below (1, 2). Along similar lines, the term 
energy dispersal, rather than spreading, has been used (3, 4).

In addition to the interpretation of an entropy change ΔS in 
terms of a spatial redistribution of energy in a thermodynamic 
process, there is a complementary interpretation of S for a ther-
modynamic equilibrium state: S reflects the extent to which a 
substance jumps from one accessible quantum microstate to 
another as time passes—for example, over a measurement’s 
observation time.1 This is temporal spreading of the system’s in-
stantaneous microstate over some number, say W, of microstates 
with energies in a narrow energy range near the internal energy 
U. The system can be in any of the W microstates for a given 
thermodynamic macrostate defined by temperature, pressure, 
and mole number.

The spreading concept has much support, with numer-
ous examples illustrating its validity. Temporal spreading is 
consistent with, and supported by, the Boltzmann–Planck 
entropy expression S° = kB ln W° (4), where W° is the number 
of microstates that become occupied sequentially in time under 
standard temperature and pressure and kB is the Boltzmann 
constant. The spatial spreading notion has been used to derive 
the Clausius entropy expression, dS = Dqrev/T, which is known 
to give results that are consistent with the Boltzmann–Planck 
entropy (1, 2). Because spatial and temporal spreading explicitly 
entail energy considerations, the concept can be a useful tool for 
understanding aspects of entropy.

Here, we report an investigation of the entropy–energy 
connection by examining the energy needed to raise a substance 
from (nearly) absolute zero temperature to T° = 298.15 K re-
versibly at atmospheric pressure 1.013 × 105 Pa. This energy is 
ΔH°, the enthalpy delivered to the system,
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Cp(T ) is the constant-pressure, temperature-dependent molar 
heat capacity, which has been measured for diverse substances 
over many years. Accounting for the third law of thermody-
namics statement that a substance’s entropy approaches zero as 

T → 0 K, the entropy change during the heating process is
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Equations 1 and 2 are used to calculate the enthalpy input ΔH° 
for (0, T°) and the standard entropy at temperature T° and 
atmospheric pressure. In this article, we focus attention on 77 
substances that are solids under standard conditions (5–23).

As a substance is heated, the absorbed energy spreads spa-
tially throughout the volume of the material. From a classical 
viewpoint, the average kinetic and potential energies within the 
substance are expected to increase. From a quantum mechani-
cal view, the substance is excited continually to higher system 
energy states, where the system’s density of states is greater 
and more energy states become accessible. From the first law 
of thermodynamics, the substance’s internal energy change is 
ΔU° = ΔH° – w, where w is the net work done by the substance. 
However, for substances that remain solid to 298.15 K, the work 
w is due to typically small volume changes from thermal expan-
sion (or contraction), so |w| << ΔH° and to a good approxima-
tion ΔU° ≈ ΔH°. Thus, essentially all the energy supplied during 
heating is stored within a solid as internal energy. 
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Figure 1. Standard entropy vs enthalpy for solids 1–76 listed in Table 
1. Data points for monatomic solids (except iodine, which forms I2 
units) are connoted by triangles and other data points by shaded 
circles. Substance numbers are shown for six data points that are 
farthest from the best-fit line. These are discussed explicitly in the 
online material. 
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Table 1. Enthalpy (∆Ho for 0 → 298.15 K) and So for Solids

Sub-
stance

Name Formula ∆Ho/ 
(J mol–1)

So/ 
(J K–1 mol–1)

Lit 
Citation 

Sub-
stance

Name Formula ∆Ho/ 
(J mol–1)

So/ 
(J K–1 mol–1)

Lit 
Citation 

1 Carbon (diamond) C 	 520 2.36 	 6 40 Aluminum fluoride AlF3 	 11620 66.5 	 5
2 Carbon (graphite) C 	 1060 5.7 	 7 41 Mercury oxide HgO 	 9120 70.3 	 5
3 Boron B 	 1220 5.9 	 5 42 Sodium chloride NaCl 	 10560 72.1 	 11
4 Beryllium Be 	 1950 9.5 	 5 43 Rubidium Rb 	 7490 76.8 	 5
5 Beryllium oxide BeO 	 2840 13.8 	 5 44 Uranium dioxide UO2 	 11280 77.0 	 5
6 Silicon Si 	 3180 18.8 	 8 45 Potassium chloride KCl 	 11400 82.6 	 12
7 Magnesium oxide MgO 	 5160 27.0 	 5 46 Cesium Cs 	 7770 85.2 	 8
8 Aluminum Al 	 4610 28.3 	 9 47 Magnesium chloride MgCl2 	 14120 89.6 	 13
9 Lithium Li 	 4630 29.1 	 5 48 Boric acid H3BO3 	 13520 90.0 	 5

10 Titanium Ti 	 4820 30.7 	 5 49 Magnesium sulfate MgSO4 	 15500 91.6 	 14
11 Germanium Ge 	 4640 31.1 	 5 50 Potassium bromide KBr 	 12150 95.9 	 11
12 Sulfur S 	 4410 32.1 	 5 51 Uranium trioxide UO3 	 14590 96.1 	 5
13 Magnesium Mg 	 5000 32.7 	 5 52 Silver chloride AgCl 	 12030 96.3 	 5
14 Copper Cu 	 5070 33.2 	 9 53 Ferrous sulfate FeSO4 	 17250 107.6 	 14
15 Calcium oxide CaO 	 6750 38.1 	 5 54 Calcium chloride CaCl2 	 15170 108.4 	 13
16 Germanium dioxide GeO2 	 7230 39.7 	 5 55 Copper sulfate CuSO4 	 16860 109.2 	 5
17 Phosphorus P 	 5360 41.1 	 5 56 Manganese sulfate MnSO4 	 17580 112.1 	 14
18 Silicon dioxide SiO2 	 6920 41.5 	 5 57 Iodine I2 	 13200 116.1 	 5
19 Calcium Ca 	 5740 41.6 	 5 58 Ferrous chloride FeCl2 	 16220 118.0 	 13
20 Zinc Zn 	 5660 41.6 	 5 59 Manganese chloride MnCl2 	 15340 118.2 	 13
21 Platinum Pt 	 5730 41.7 	 8 60 Ferric chloride FeCl3 	 19300 142.3 	 15
22 Silver Ag 	 5750 42.6 	 5 61 Ferrous oxide Fe3O4 	 24550 146.4 	 16
23 Zinc oxide ZnO 	 6930 43.7 	 5 62 Lead sulfate PbSO4 	 20050 148.5 	 5
24 Stannic dioxide SnO2 	 8380 49.0 	 5 63 Uranium fluoride UF4 	 22670 151.7 	 17
25 Uranium U 	 6360 50.2 	 5 64 1,4-Dichlorobenzene C6H4Cl2 	 25340 174.0 	 18
26 Titanium dioxide TiO2 	 8680 50.6 	 5 65 Potassium sulfate K2SO4 	 25570 175.6 	 14
27 Aluminum oxide Al2O3 	 10020 50.9 	 5 66 Mercurous chloride Hg2Cl2 	 23350 191.6 	 5
28 Tin Sn 	 6320 51.2 	 5 67 1,3,5-Trichlorobenzene C6H4Cl2 	 27670 198.0 	 18
29 Sodium Na 	 6460 51.3 	 5 68 Mercurous sulfate Hg2SO4 	 26070 200.7 	 5
30 Thorium Th 	 6350 51.8 	 5 69 Uranium hexafluoride UF6 	 31570 227.6 	 17
31 Cadmium Cd 	 6250 51.8 	 5 70 Cadmium sulfate CdSO4∙8/3H2O 	 35560 229.7 	 5
32 Boric oxide B2O3 	 9300 54.0 	 5 71 Triuranium octoxide U3O8 	 42740 282.6 	 5
33 Cadmium monoxide CdO 	 8410 54.8 	 5 72 Uvarovite Ca3Cr2Si3O12 	 53600 320.9 	 19
34 Stannic oxide SnO 	 8740 57.2 	 5 73 Tridecanol C13H27OH 	 56450 371.7 	 20
35 Magnesium fluoride MgF2 	 9910 57.2 	 5 74 Sucrose C12H22O11 	 62690 392.4 	 21
36 Lithium chloride LiCl 	 9420 59.3 	 8 75 Nonadecane C19H40 	 78000 510.0 	 22
37 Potassium K 	 7090 64.7 	 5 76 Eicosane C20H42 	 79880 529.0 	 22
38 Lead Pb 	 6940 64.8 	 10 77 Tripalmitin C51H98O6 	204020 1365.0 	 23

39 Thorium oxide ThO2 	 10560 65.2 	 5

Findings

Beginning this project, we hypothesized that standard en-
tropies would be correlated only crudely with the energy added 
because various factors might cause S° to increase nonlinearly 
with greater ΔH° values. The data in Table 1 indicate that not 
only was this hypothesis incorrect, but the plot in Figure 1 shows 
that many of the data points hover near the linear regression 
best-fit line, defined by

	

10 0066
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for an extremely broad range of substance sizes and types. The 
strong linear correlation of entropy and enthalpy supplied 

is visually evident in Figure 1 and is supported by the value 
R2 = 0.9863.2

It is indeed notable that the standard molar entropy is very 
nearly proportional to the enthalpy input from 0 → 298.15 K for 
such a wide variety of solids. Equation 3 can be used to quickly 
estimate the standard entropy of a solid, within 10 percent for 
over half the listed substances, given their enthalpy values.3 
Therefore, Figure 1 and eq 3 illustrate important connections 
between entropy and the concomitant internal energy stored by 
solids: The standard entropy of many solids is linearly linked to 
the quantity of energy needed to bring them from near absolute 
zero to room temperature at atmospheric pressure. The energy 
added has spread throughout and is stored within the solid. This 
provides a straightforward physical interpretation of entropy, 
without recourse to “disorder” or “randomness”.
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Why the Correlation Line Has a Slope of 0.0066 K–1

The reason that the value of the slope in eq 3 is 0.0066 K‒1, at 
least in broad-brush strokes, is as follows. Because the maximum 
heat capacity of solids increases with Z, the number of atoms or 
ions per unit, complex solids with Z > 1 per unit have higher 
heat capacity, entropy, and enthalpy at room temperature. The 
data in Figures 2 and 3 show that for sufficiently complex solids, 
the maximum heat capacity is not reached until temperatures 
much higher than 300 K, and Cp becomes roughly a straight line 
beginning at the origin, as dictated by the third law of thermo-
dynamics. In such cases, where Cp ≈ AT, with A = constant, the 
implied entropy-to-enthalpy ratio is

	

1K

S
H

T
.

1
2

0 0067

A T
T

d
0

TA T
T

d
0

TdTd
T

0

TpC

TdT
T

0

TpC

pC

	 (4)

This result is in good agreement with the entropy-to-enthalpy 
ratio for points on the best-fit line in Figure 1. We conclude 
that solids for which the heat capacity can be approximated by 
a linear heat capacity will have their (ΔH°, S°) points close to 
the best-fit line. 

Notably, this group primarily consists of complex organic 
substances. More generally, to describe any solid substance, the 
ratio S°/ΔH° can be written as
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where
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〈T 〉 is an average temperature and calculated using the (un-
conventional, but mathematically convenient) “distribution 
function”,
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Empirical data show that Cp(T )/T ∝ T 2 for T → 0, then peaks 
at some value of T and decreases as T increases further. 

A simple, albeit coarse, estimate 〈T〉est is the arithmetic mean 
of the minimum and maximum temperatures during heating, 
that is, 〈T 〉est = ½(0 + 298.15) = 149.57 K, which immediately 
yields 1/〈T〉est = 0.0067. This is not surprising because if Cp = AT 
(as discussed above), the distribution function f (T ) is constant, 
which implies that 〈T 〉 is given by the arithmetic mean above. 
Solids whose data points lie near the best-fit line in Figure 1 have 
heat capacities and corresponding distribution functions f (T ) 
that imply average temperatures 〈T 〉 ≈ 149 K.

Because Cp is in both the numerator and denominator of eq 
4, the entropy-to-enthalpy ratio is relatively insensitive to small 
changes in Cp(T ), which contributes to the phenomenon of 
many solids having their data points near the best-fit line in Fig-

ure 1.4 It is also true that changes in Cp(T ), especially at higher 
temperatures, typically change ΔH° more than S° because of the 
factor 1/T in the integrand of eq 2. Deviations from the best-fit 
line are extensively addressed in the online material.

Influence of Variations in Heat Capacity  
on Standard Entropy 

Given that both ΔH° and S° depend critically on the behavior 
of the molar heat capacity5 of substances as a function of T, it is 
useful to examine differences between the heat capacities of five 
solids for the temperature interval, 0 → 298.15 K. A graph of 
Cp(T) versus T for these archetypal solids is shown in Figure 2. 

The solid with the smallest heat capacity in this temperature 
range is diamond, which has the smallest volume per atom and 
exceptionally strong forces between adjacent atoms. Because of its 
relatively low mass and closely spaced atoms, quantum effects exist 
from near 0 K to diamond’s unusually high Debye temperature, 
ΘD = 2230 K.6 Diamond’s high Debye temperature results from 
its vibrational energy being dominated by high-frequency oscil-
lations. Put differently, diamond’s lattice is stiff, as indicated by its 
exceptional hardness. The relatively small heat capacity in (0, T°) 
shows that only a correspondingly small energy input is needed to 
raise diamond’s temperature from near 0 K to T°, and diamond’s 
data point (not labeled) in Figure 1 lies below the best-fit line. 

Figure 2. Molar heat capacity vs temperature for three monatomic 
solids, a solid with Z = 2 atoms per unit, and a solid with Z = 3 atoms 
per unit, as described in the text. Note that the maximum molar heat 
capacity, Cp(To) < 80 J K–1mol–1.
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Figure 3. Molar heat capacity vs temperature for three polyatomic 
solids: uvarovite (Ca3Cr2Si3O12); sucrose (C12H22O11); and tridecanol 
(C13H27OH). For each solid substance, the Debye temperature is 
much larger than 300 K. Note that the maximum molar heat capacity 
is over 400 J K–1mol–1, compared with the maximum less than 
80 J K–1mol–1 in Figure 2.
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Copper’s larger atoms are farther apart and less tightly bound 
to one another, and therefore its heat capacity lies well above that 
for diamond. Furthermore, for temperatures near 300 K, Cp(T) 
has nearly reached its classical plateau of 3R + Δ, where Δ = Cp – 
Cv > 0 and Cv is the constant-volume molar heat capacity.7 This is 
consistent with the equipartition of energy, namely, each degree 
of freedom contributes ½R per mole to the heat capacity. Because 
a 3D oscillator has six degrees of freedom (three each from space 
and momentum coordinates), the total contribution is 3R. Cop-
per’s data point in Figure 1 lies 1% below the best-fit line.

Lead, with larger atoms than copper, also has a larger vol-
ume per atom, weaker interatomic forces, and the relatively low 
Debye temperature, ΘD ≈ 85 K. In Figure 2, heat capacity of lead 
can be seen to rise much more rapidly between 0 K and 50 K 
than that of copper, or that of other substances, such as cesium 
(ΘD ≈ 45 K) and rubidium (ΘD ≈ 60 K). The larger quantity 
of energy required at these low temperatures also causes an un-
usually great entropy increase because Cp/T is relatively large at 
lower temperatures (see eq 2) and thus, lead’s standard entropy 
is 41% above the best-fit line.

We now consider solids in which there are Z ≥ 2 atoms or 
ions per formula unit. The first example is NaCl, with Z = 2, 
which implies that the total number of degrees of freedom is 
double that for a monatomic solid. Thus, for sufficiently high 
temperatures, equipartition of energy implies that the maximum 
constant-volume heat capacity Cv is expected to be 6R per mole 
of di-ionic units.8 That is, the maximum Cp = 6R + Δ, which is 
consistent with NaCl in Figure 2. For FeCl2, with 3 ions per unit, 
the maximum Cp ≈ 9R + Δ, which is also evident in Figure 2. The 
data points for NaCl and FeCl2 in Figure 1 lie 3.4% and 10.3% 
respectively above the best-fit line.

In general, as the number of atoms, Z, increases, the maxi-
mum heat capacity rises and the Debye temperature becomes 
larger. This is suggested in Figure 2 for substances with Z = 1, 
2, and 3; that is, one to three atoms per unit. However, for more 
complex polyatomic solids, especially covalent substances with 
20 or more atoms (Z ≥ 20), the molar heat capacities approach 
their maximum values only for temperatures far greater than T°. 
Typical heat capacities in the temperature range (0, T°) for three 
complex polyatomic solids, with Z = 20, 42, and 45, are shown 
in Figure 3. For each, the Debye temperature, ΘD >> 300 K.

Despite some wiggles for tridecanol and a small cusp associ-
ated with an unexplained low-temperature anomaly for uvarovite, 
the heat capacity curves can be approximated by straight lines to 
calculate ΔH° and S°. For eicosane (C20H42) with Z = 62 (sub-
stance 76 in Table 1), a graph of heat capacity versus temperature 
and a linear approximation are shown in Figure 4. Eicosane’s 
entropy lies only 0.3% above the best-fit line. In what follows, 
we show that the nearly linear behavior of Cp(T) can help us 
understand why the highly complex polyatomic solids have data 
points near the best-fit line for S° versus ΔH° in Figure 1.

The Debye model of a solid depicts a monatomic solid 
as N atoms linked to other atoms by harmonic forces. Clever 
mathematics (i.e., a normal mode transformation) transforms 
the problem into a set of independent 3D harmonic oscillators 
with an unknown distribution of frequencies, ν. Debye assumed 
this distribution to be that of continuous acoustic waves, pro-
portional to ν2, with a maximum “Debye” frequency, νD. The 
corresponding Debye temperature is defined as ΘD ≡ hνD/kB, 
where h is Planck’s constant. This definition shows that solids 
with relatively low Debye temperatures, for example, lead, are 

limited to relatively low-frequency lattice vibrations. In contrast, 
diamond, with Debye temperature 2230 K, is dominated by 
higher-frequency and higher-energy vibrations.

In polyatomic covalent solids, individual atoms within 
each polyatomic molecule are closer together than the larger 
polyatomic molecules are to one another, and the forces between 
atoms within a molecule are typically stronger than forces be-
tween molecules. Thus, lattice vibrations are excited at lower tem-
peratures and internal vibrations of atoms within molecules are 
excited significantly only at higher temperatures. At sufficiently 
low temperatures a system containing N polyatomic molecules, 
each with Z atoms, behaves similarly to N atoms in the sense that 
each molecule vibrates about its own lattice site, with internal 
vibrations within molecules being negligible.9 As temperature 
increases, lattice vibrations are accompanied by internal vibra-
tions within the covalent molecules. Consistent with energy eq-
uipartition, the maximum molar heat capacity Cv for these atoms 
is max Cv = 3ZR, and thus, max Cv > 3ZR. This picture does not 
account for coupling between the lattice and internal vibrations. 
It also does not address existing anharmonic forces.10

Conclusions and Their Importance  
in General Chemistry 

The stimulus for investigating the data for a number of 
solids at room temperature was to see how well the entropy of a 
solid at room temperature correlates with the enthalpy that must 
be added to the solid from a hypothetical near 0 K to 298.15 K. 
It is stunning that some monatomic, diatomic, triatomic, and 
heavy polyatomic ionic solids, as well as complex covalent solids 
(e.g., tripalmitin2) have data points on or near the best-fit line 
with a slope of 0.0066 K‒1 in Figure 1. Clearly there is a strong 
linear correlation between standard entropy S° and energy input 
ΔH° over the temperature interval (0, T°). 

In general chemistry courses, the standard molar entropy 
of a substance is usually presented as a number among many in 
a routine table, with the statement that the liquid and gaseous 
forms of a solid have successively higher entropy values. We 
believe the striking visual impact of Figure 1 can help students 
gain a considerably greater understanding of the nature of 
entropy. The main point is that the data in Figure 1 show that 
standard entropy reflects the quantity of energy stored within 
solid substances at a given temperature.11 More specifically, the 
entropy S° of a solid at temperature 298 K and atmospheric 
pressure is proportional to the quantity of energy stored within 
it at that temperature, with the proportionality constant  

Figure 4. Cp(T ) vs T for eicosane (circles) and linear approximation 
Cp(T ) ≈ 1.76 T (solid line). The data imply So = 523 J K–1mol–1 and 
∆Ho = 77972 J mol–1. The approximation implies So = 526 J K–1mol–1 
and ∆Ho = 79884 J mol–1.
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0.0066 K‒1. This stored energy has been spread spatially through-
out the substance’s molecules and is stored in the substance’s 
accessible energy storage modes. Quantum mechanically, the 
standard entropy can be usefully viewed in terms of the sequential 
temporal spreading of a substance’s instantaneous microstate to 
any of the other accessible microstates. The spreading metaphor, 
which entails energy, provides a more accurate picture of entropy 
than attempts to relate it to the unfortunately vague concept of 
“disorder”. For more advanced students, the latter points can be 
accompanied by discussions of molar heat capacities, Debye tem-
peratures, and energy storage by lattice vibrations, and internal 
vibrational and rotational modes within polyatomic units.

In response to some general chemistry texts that emphasize 
“configurational entropy” by focusing on the “probability of 
locations” without including the importance of energy, we close 
with the following observation: Without energy, there would 
be no thermodynamics and no entropy. Entropy and energy 
are intimately related concepts that form the underpinning of 
thermodynamics. Examination of the S° versus ΔH° graph for 
solids showcases the energy–entropy relationship.
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Notes

	 1.	 Energy exchanges to and from the surroundings cause a solid’s 
instantaneous system microstate to change continually, which consti-
tutes temporal spreading. The standard entropy in thermodynamic 
equilibrium at a given temperature and pressure reflects the number of 
system states over which the system’s instantaneous microstate spreads 
sequentially during typical observation times.
	 2.	 R2, the square of the correlation coefficient between S° and 
ΔH°, is one indicator of the goodness of fit. Tripalmitin, C51H98O6, not 
shown in Figure 1 because its inclusion would have unduly compressed 
other data points, has the very large values of ΔH° = 204022 J mol‒1 
and S° = 1365 J mol‒1 K‒1. Nevertheless, for the latter enthalpy value, 
the entropy deviates from that predicted by the best-fit line by 1.4%.
	 3.	 Some readily explicable deviations from eq 3 exceeding 30% 
exist. These are reflected in the standard deviation σ = 12.2 J K‒1 mol‒1 

for the best-fit line relative to empirical S° values. These deviations are 
discussed in the online material. 
	 4.	 Furthermore, under the scale transformation Cp(T ) → λ 
Cp(T ), with λ > 0, S°/ΔH° does not change. 
	 5.	 A good exposition of the heat capacity of ideal gases can be 
found in ref 24.
	 6.	 ΘD can be viewed (roughly) as the temperature that separates 
the heat capacity’s classical plateau of approximately 3R from the lower 
temperature quantum region over which Cp(T ) increases from 0 K. 
	 7.	 Typically Δ < 0.05 Cp.
	 8.	 For metals, Cv(T ) can exceed 3R because of contributions 
from conduction electrons. This effect is typically less than 0.01 Cv, 
and is not dealt with explicitly here. Cv(T ) can also exceed 3R because 
of anharmonic forces. See note 10. 
	 9.	 The Debye model has been applied with moderate success to 
many polyatomic solids for which the atoms in a unit have nearly equal 
masses, the solid is isotropic, and near-neighbor force constants are of 
similar strength. In other cases, the Debye model fails, and it is common 
to assign a Debye temperature ΘD(T) to match measured heat capacities 
for each temperature T. 

	 10.	 Anharmonicity is necessary to explain theoretically why solids 
undergo thermal expansion and are thermal conductors. Furthermore, 
anharmonic forces are needed to explain measured Cv(T) values in excess 
of 3R for some monatomic solids, including Cu at room temperature. 
	 11.	 This statement is based upon the specific comparison of S° and 
ΔH° for the specific temperature interval (0, 298.15). Figure 1 makes it 
clear that different solids store energy differently from one another. 
Generally, in a thermodynamic equilibrium state, S reflects not only 
the quantity of energy stored, but also how that energy is stored.
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