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depicts (a) a hypothetical rigid solid with zero internal energy, 
U = 0 and (b) a dilute gas whose internal energy U > 0 and is 
variable. 

In a macroscopic system the number of individual kinetic 
and potential energy terms is enormous and impossible to 
deal with individually. The many molecules of solids typically 
vibrate about localized lattice sites and have numerous trans-
lational, rotational, and vibrational energy modes. Similarly 
the prodigious number of molecules in a gas have kinetic and 
intermolecular potential energies. Recognizing the impos-
sibility of dealing with these systems microscopically, the 
macroscopic internal energy function U is postulated in ther-
modynamics.

Key point 1.1:  The existence of internal energy that can be 
varied makes a system “thermodynamic.”

• What is a “state function” and why is internal energy a  
   state function?
A state function is what we normally call a function in 
mathematics. The internal energy function U, envisaged as 
an average total energy, is postulated to be a function of a 
small number of thermodynamic variables, e.g., temperature 
T, system volume V, and number N of molecules; i.e., for a 
given thermodynamic state, (T, V, N), the internal energy 
U = U(T, V, N). Typically, for systems with sufficiently short-
range intermolecular forces, U is an increasing function of 
temperature T for fixed V and N.

Energy and entropy are centerpieces of physics. Energy 
is typically introduced in the study of classical mech-
anics. Although energy in this context can be chal-

lenging, its use in thermodynamics and its connection with 
entropy seem to take on a special air of mystery. In this 
five-part series, I pinpoint ways around key areas of difficulty 
to reduce that mystery. In Part I, the focus is on building an 
understanding of fundamental ideas of thermodynamics, 
including its connection with mechanics, and how entropy is 
defined and calculated. A central thread is that energy tends 
to spread within and between macroscopic objects, and this 
spreading is a surrogate for entropy increase. Specific ques-
tions are posed and answered, building on foundations laid in 
prior articles.1–8 Parts II-V elaborate considerably on the ideas 
introduced here. A question-answer format is used through-
out, with major results enumerated in Key Points 1.1-1.5.

In 1996 and 2007,9–11 I suggested viewing entropy as a 
“spreading function.” Independently, chemist Frank Lam-
bert12–15 proposed a similar idea. Stimulated by Lambert’s 
work, the energy spreading metaphor has been adopted by 
the authors of over two dozen general chemistry and physi-
cal chemistry textbooks. In contrast, the connection between 
energy spreading and entropy has not been widely embraced 
by authors of physics textbooks. This two-part article is an at-
tempt to promote greater appreciation of the fact that entropy 
is in essence a spreading function.

Questions and answers
 •What distinguishes thermodynamics from classical 
   mechanics? 
An inability to answer this question can make thermody-
namics seem confusing. Classical mechanics deals with point 
particles and rigid bodies. Both of these are fictitious model 
systems that do not exist in nature, and are not thermody-
namic systems. A point particle can neither rotate nor vibrate 
and thus cannot store energy within it. This differs from a 
real atom, which stores energy internally—energy that can 
vary by absorption and/or emission of radiation.

A rigid body’s atoms are assumed to be point-like, with 
fixed positions relative to one another, so energy cannot be 
added to or taken from such a model system. The simplicity 
of a rigid body makes it useful for approximating the behavior 
of real physical systems in classical mechanics, when changes 
in internal energy are negligible. In contrast, thermodynamics 
deals with systems that have internal degrees of freedom. For 
example, the molecules of a gas have kinetic energies and in-
teract with one another via mutual potential energies. Figure 1 
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(a) Rigid solid 
     U = 0

(b) Dilute gas 
     U > 0 and variable

Fig. 1. Depictions of (a) a rigid solid, with zero internal 
degrees of freedom and zero internal energy, and (b) a dilute 
gas, whose internal energy consists primarily of the sum 
of all molecular kinetic energies. The model in (a) is not 
thermodynamic because its atoms are assumed to be point 
particles that are fixed relative to one another; i.e., there are 
no internal degrees of freedom and the internal energy is 
zero and unchangeable. The model in (b) represents a ther-
modynamic system with nonzero, variable internal energy.

This is the introductory part of a five-part series. Parts II-V will elaborate considerably on the material presented here.
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and heat processes. For example a process might entail seg-
ments with T,  P, or V constant, each with different Q and W 
values. For each such combination, Q and W depend not only 
on A and B but on the specific path connecting them.

Key point 1.3:  Heat and work are processes. The values 
of Q and W in DU = Q –W are dependent on the specific 
thermodynamic paths that connect equilibrium states, but 
notably, DU is the same for all paths. It is important to under-
stand that Q and W are transient process energies and are not 
stored. Once a process is over, the system stores internal energy 
U, and there is no memory of Q or W, or the particular heat 
and/or work paths.

• What is entropy and why does it occur in  
   thermodynamics and not in mechanics?
Entropy can be viewed usefully in terms of its changes dur-
ing thermodynamic processes, which generally entail spatial 
redistributions of internal energy. As such, entropy has sig-
nificance only for systems that store internal energy. Because 
neither a point particle nor a rigid body, the two mainstays 
of classical mechanics, stores internal energy, their entropy 
values are zero and unchanging. Thus, entropy is normally 
not even mentioned in classical mechanics. In contrast, 
macroscopic gases, liquids, and solids have internal degrees 
of freedom and store internal energies that can be varied by 
work and/or heat processes. Even an ideal gas, though com-
posed of point particles, has internal energy because those 
particles have kinetic energy.

In a real thermodynamic process, an internal energy redis-
tribution occurs and entropy is generated in the universe. For 
example, when a hot cup of soup cools, heating its surround-
ings slightly, energy spreads from the cup and soup to the  
surroundings until there is a uniform temperature. Were 
spreading to continue further, the soup would become cooler 
than the surroundings, which obviously does not happen!  
In this sense, energy spreads maximally—i.e., as much as is 
needed to generate temperature equality between soup, cup, 
and surroundings. The central idea of energy spreading maxi-
mally is the essence of the second law of thermodynamics. 
This is discussed in detail in Parts II-V of this series. 

If two identical solid copper blocks at different tempera-
tures are put in thermal contact, energy spreads as much as 
possible, becoming distributed equitably, namely uniformly, 
with each block having half the energy. Because different ma-
terials store internal energy differently, when equal masses of 
two different materials have equal temperatures, their internal 
energies differ in general, and the meaning of an equitable 
energy distribution is less evident a priori. This is addressed in 
Part V of this series.

Although it is possible for energy to “unspread” spatially, 
clumping in finite spatial regions, this happens only in special 
cases, and is accompanied by compensating redistributions of 
energy.18

Key point 1.2:  State functions in thermodynamics describe 
equilibrium thermodynamic properties. They do not depend 
on how equilibrium was reached; i.e., they have no path or his-
tory dependence. Internal energy represents the energy stored 
within an object for a given thermodynamic state specified by 
a small number of thermodynamic variables such as (T, V, N).

• Why are heat and work NOT state functions?
It is important to understand that neither heat nor work is 
a function. Heat and work are best viewed as adjectives that 
indicate process types. Historically, however, the term heat 
was considered as either motion of small particles—even 
before the existence of atoms was established—or a con-
served, stored entity referred to as heat or caloric.16 Largely 
because of remnants from the erroneous and obsolete caloric 
theory, the history of heat and the language used for it has 
been a tortuous one.17

In modern terms, a heat process is an energy transfer in-
duced by a temperature difference, with the transferred  
energy denoted by Q. For example, heating water on a stove 
entails a temperature difference between burner and pot. A 
very different, but important, class of processes called adia-
batic are pure work processes with Q = 0.

The simplest work process is an expansion or compression 
of a gas, induced by a pressure difference that results in the 
gas doing positive or negative work on its surroundings. We 
define W as the work done by the gas, so W > 0 when the gas 
expands, and W < 0 when the gas is compressed. With this 
convention, in an adiabatic volume change, if the work done is 
denoted by Wad, then DU = –Wad. That is, in a slow adiabatic 
expansion, the gas does positive work, reducing its internal 
energy.

Generally, for a combination work plus heat process, we 
write the first law of thermodynamics as

DU = Q –W. 					              (1)

Knowing the work Wad for any adiabatic process that con-
nects two equilibrium states determines DU = Wad. Then for 
any nonadiabatic process connecting the same two states, Q 
can be deduced by measuring W and using Eq. (1), Q = DU 
+ W = Wad + W. This gives an operational definition of Q in 
terms of measurable work values for two different processes 
that connect two given states.

Suppose a gas is heated from state A to state B at constant 
pressure. It could instead be heated at constant volume from 
state A to an intermediate state C, with zero work, and then 
brought to state B by an adiabatic expansion. Because DU = 
UB – UA for both paths, AB and ACB, QAB–WAB = QACB –
WACB, or equivalently, QAB – QACB = WAB – WACB. Path ACB 
entails higher pressures than AB, and thus WACB > WAB and 
QAB > QACB.

The latter result is an example of the important point that 
rather generally, any two equilibrium thermodynamic states 
A and B can be connected by many different combined work 

Downloaded 26 Jan 2013 to 67.189.52.253. Redistribution subject to AAPT license or copyright; see http://tpt.aapt.org/authors/copyright_permission



30	 The Physics Teacher ◆ Vol. 50, January 2012

Key point 1.4:  Thermodynamic processes entail spatial 
redistributions of internal energies, namely, the spatial spread-
ing of energy. Thermal equilibrium is reached when energy 
has spread maximally; i.e., energy is distributed equitably 
and entropy is maximized. Thus, entropy can be viewed as a 
spreading function, with its symbol S standing for spreading. 
Although not Clausius’ motivation for using S, this can serve 
as a mnemonic device. Energy spreading can entail energy 
exchanges among molecules, electromagnetic radiation, neutri-
nos, and the like.

 • How is entropy calculated?
Though it is often overlooked, every macroscopic material in 
thermodynamic equilibrium has a numerical entropy value 
that depends on its temperature, pressure, and possibly other 
variables, and these are tabulated in handbooks and on the 
Internet. Clausius’ algorithm,

					                                (2)rev

enables calculation of entropy changes, namely, for a slow, 
reversible heating process,19 where infinitesimal energy  
d_Qrev is transferred to the system. We use the notation   
d_Qrev rather than dQrev to remind us that Qrev is not a state 
function and thus d_Qrev is not an “exact” differential; i.e. 

 Indeed there exist no functions Qa and Qb.
The term algorithm is appropriate because Eq. (2) is a cal-

culation tool that requires a fictitious, reversible process rather 
than the actual irreversible process (in Part IV, we explain that 
all real processes are irreversible). Given initial and final equi-
librium states, any reversible path suffices. If the energy trans-
fer is from the system, then d_Qrev < 0. The generalization of 
Eq. (2) for an irreversible process is dS > d_Q/T,20 where d_Q is 
for the actual process. For example, an infinitesimal adiabatic 
free expansion, with d_Q = 0, has dS > 0.

When a system is heated very slowly and reversibly at con-
stant atmospheric pressure P, the added energy for each add-
ed tiny increment is d_Qrev   CP (T) dT, which defines CP(T), 
the heat capacity at constant pressure. (At constant volume,  
d_Qrev   CV (T) dT.)  If heating is from initial temperature Ti 
to final temperature Tf , the constant-pressure entropy change 
is

						               (3)

Available data for CP for solids at atmospheric pressure as a 
function of temperature enables numerical evaluation of DS. 
One can also calculate the enthalpy change,21 
for many real solids using the lowest achievable minimum 
temperature Ti < 0 K and Tf = 298.15 K (a common ref-
erence temperature). For Ti → 0, a simplification occurs 
using the third law of thermodynamics, namely, the zero 
temperature limit of entropy is zero for all pressures P. Thus 
DS = S(298.15) – 0  S°, the so-called standard entropy. 
Numerical values obtained using this procedure for solids 
will be presented in Part II.22

Key Point 1.5:  Heat capacity data for a solid from near 
absolute zero to 298.15 K at atmospheric pressure enables a 
numerical evaluation of standard entropy. Because all non-
zero entropy values entail adding energy to a substance, it is 
clear that entropy and energy are intimately related. If the 
substance is a liquid or gas at 298.15 K and standard pressure, 
the entropy calculation is slightly more complicated, entailing a 
knowledge also of the so-called latent heat of melting and (for 
a gas) vaporization.

In Parts II-V of this series,22 we discuss the Clausius and 
Boltzmann entropies, numerical entropy, connections with 
stored internal energy, entropy’s spreading nature, and its 
relationship with uncertainty. We show that entropy can be  
viewed with simple graphs, and is related to reversibility, ir-
reversibility, constant-temperature reservoirs and the concept 
of equity.
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