edge-up flotation behavior of the prisms is due to the fact,
that they are deprived of one of their degrees of freedom:
Their fourfold axis is constrained to stay parallel to the
liquid surface.

After these examples it should be dalliance for the daunt-
less reader to determine the equilibrium positions, as func-
tions of r, of the two remaining Platonic solids: the icosahe-
dron and the pentagondodecahedron.
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APPENDIX A

Explicit expressions for the integral I of Eq. (6) in the
cases needed in the analytic calculation:
(V) Ifax1,b>1,and c>1:

1 1
24abc «/a’+b2+cz '
(2) Ifa<1, b<1,c<l,a+ b3, b+ c>l,a + c>1:

I= L L @1

,[az + bz + cz 24abc

+(b=D*+ (c=1)*—1].

I= — (A1)

(A2)
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(3) Ifa<1, b<1,c2l,a + b>1:
I = 1 1
Va> ¥ b7 ¢F 24abe

+6(a*+b%) —4(a+b) +1].

[a*+b%—4(a+b7)

(A3)

In this case,the immersed volume is
V, = (1/6ab)[1 — (1 —a)®> — (1 —b)?].

There are five other cases, for which we do not give I. They
were used in the preliminary numerical work (see Sec. IT).

'Part 1 of this paper. Equations of Part 1 are referenced by the prefix 1;.

2Ch. Dupin, “De la stabilité des corps flottants,” 1814, included in Appli-
cations de Geométrie et de Mecanique (Bachelier, Paris, 1822).

*A. S. Ramsey, Hydrostatics (Cambridge U.P., Cambridge, 1936), p. 82.

“H. Lamb, Statics (Cambridge U.P., Cambridge, 1946), 5th ed., p. 421.

H. Yeh and J. 1. Abrams, Principles of Mechanics of Solids and Fluids
(McGraw-Hill, New York, 1960), Vol. 1, p. 96.

°E. N. Gilbert, “How things float,” Am. Math. Monthly 98, 201-216
(1991).
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A comprehensive “taxonomy of work”’ is developed to clarify the confusing potpourri of worklike
quantities that exists in the literature. Seven types of work that can be done on a system of particles
interacting internally and/or with its environment are identified and reviewed. Each work is
defined in terms of relevant forces and displacements; mathematical connections between the
works are delineated; work-energy relationships are derived; and the Galilean transformation
properties of the works and corresponding energy changes are obtained. The results are applied to
several examples, illustrating subtle distinctions between the various works and showing how
they can be used to bridge the conceptual gap between the ““pure” mechanics of point particles and

the thermodynamics of macroscopic matter.

1. INTRODUCTION

It is widely appreciated that the definition of work en-
countered in most introductory physics textbooks,

W= f Fedr, (10

is well defined only when the force acts either on a point
particle or a rigid body in pure translation." In the realm of
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“pure” mechanics—that part of mechanics dealing with
nondissipative entities involving observable point parti-
cles—the use of Eq. (1) is straightforward.

In contrast, when mechanics is extended into a “real-
life” domain involving macroscopic objects with hidden
internal energy modes and dissipation, Eq. (1) is inade-
quate. Authors have invented a potpourri of worklike
quantities (hereafter referred to simply as “works”) to deal
with these situations.'”!> These works go by a variety of
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names including internal work, external macroscopic
work, external microscopic work, pseudowork (also called
center-of-mass work ), conservative work, nonconservative
work, quasistatic work, thermodynamic work, and others.
The existence of this veritable zoo of works raises several
questions: How many types of works are needed? What are
the relationships between the works? What work-energy
relationships exist? Which works are frame dependent and
which are invariant under Galilean transformations? Can
the classical mechanics of a many-particle system lead to
an understanding of dissipative processes for macroscopic
objects?

Inspired by these questions and confounded by the ap-
parent confusion about the definitions for and relation-
ships between the various works, we present a systematic
examination of processes in which a classical, many-parti-
cle system undergoes mechanical interactions both be-
tween its own component particles and with its environ-
ment. We provide explicit, microscopically based
definitions of seven works that can, in principle, be calcu-
lated for such processes. From those definitions we derive
the relationships between the works and a set of “work-
energy relationships” that connect each work to a change
in some form of system energy. Finally, we determine the
Galilean transformation characteristics of all works and
energy changes.

Although this article is, in part, a review, its principal
value is as a needed synthesis and generalization of pre-
vious efforts. Using a consistent notation and terminology,
defining all relevant quantities unambiguously, and obtain-
ing the relationships between them, we provide, in essence,
the fundamentals of a complete “taxonomy of work.”

Our investigation is organized as follows: We begin in
Sec. II with a survey of prior applications of work concepts
to macroscopic objects. Sections III through VI comprise
the development of our “standard taxonomy of work.” In
Sec. VII we focus attention on a collection of engaging ap-
plications chosen to illuminate subtle distinctions between
the works and linkages between “‘pure” mechanics of point
particles and thermodynamics of macroscopic matter. We
close with a summary of our findings and a discussion of
the place of this study within the larger context of thermo-
dynamics. Readers who wish to scan the main results, by-
passing the details, are directed to Table I and Sec. VIII.

I1. SURVEY OF THE LITERATURE

Much of the confusion surrounding the subject of work
arises from the lack of a standard and distinct notation
system for quantities that are similar enough to convey the
unfortunate and mistaken impression that they are identi-
cal. The collection of authoritative articles referenced be-
low illustrates this point. Individually, each employs nota-
tion that is internally consistent and well suited to the
specific investigation being conducted. Between articles,
however, one may find the same symbol representing fun-
damentally different quantities and/or different symbols
representing identical quantities. Our notation-free discus-
sion in this section is intended to illustrate the substance
and scope of previous efforts while avoiding notational
confusion.

Difficulties encountered by naively applying the work-
energy theorem to nonrigid and/or rotating bodies have
been the subject of articles by various authors.>"** Erlich-
son,”? Penchina,® and Sherwood** have pointed out that
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many interactions are best described in terms of a
“pseudowork-kinetic energy”’ theorem. Pseudowork is cal-
culated as the work that would be done by a force equal to
the net force acting on the system if'it acted along the path
followed by the system’s center-of-mass (c.m.) and can be
shown to equal the change in bulk translational kinetic en-
ergy of the system. It is not real work in a fundamental
sense because it generally entails forces that actually act at
points distinct from the c.m. through displacements that
can differ from that of the c.m.

In a recent review, “Developing the Energy Concepts in
Introductory Physics,” Arons® argues forcefully that “The
principal misconception planted in introductory physics is
that the ‘work’ quantity appearing in the ‘work-kinetic en-
ergy theorem’ ... obtained by integration of Newton’s Sec-
ond Law, is identical with the ‘work’ appearing in the gen-
eral law of conservation of energy, namely the First Law of
Thermodynamics.” Following Penchina® and Sher-
wood,*> Arons recommends the use of the term
“pseudowork” for the quantity connected to displacement
of the c.m., “reserving the name ‘work’ for the quantity
appearing in the First Law of Thermodynamics.” He states
further, “...it is convenient because it does not completely
sever the connection between the two quantities and be-
cause it does not resort to a radically new vocabulary.”

As pointed out by Arons, careless use of the work-energy
equation can lead to mistakes and misconceptions. To illus-
trate the kinds of difficulties that can occur, consider a
completely inelastic collision between two identical
masses. Naive application of the standard work-kinetic en-
ergy theorem gives the result that the work done in stop-
ping each object is — 1mv?, where m is the mass and v the
initial speed of each object. Unfortunately, this is mislead-
ing because a straightforward symmetry argument’ shows
that the work done by each object on the other must be
identically zero! A proper treatment of this problem re-
quires one to take into account the energy of deformation.

Bernard® and Erlichson® have pointed out that the work-
kinetic energy theorem can be applied to interactions in
general if we take the “work” to be that done on a system by
both external and internal forces and the “kinetic energy”
to be that possessed by the system due to both its bulk
translational motion and the motions of its constituent
parts relative to the c.m. (For a solid body this second
constituent of the kinetic energy would include energy as-
sociated with bulk rotation and with the vibrational kinetic
energies of the molecules that make up the body.)

Canagaratna'® arrived at the same conclusion but put
the result in a different form by defining an internal poten-
tial energy change that is directly related to the work done
by internal forces during a change in the “relative configu-
ration of the constituent parts of the body.” An interesting
aspect of Canagaratna’s work is the careful distinction
made between quasistatic and nonstatic work—a concept
that is particularly important in macroscopic mechanics
which, in essence, is thermodynamics.

Kemp'' has argued that difficulties related to the book-
keeping of internal work can be circumvented entirely by
appeal to the first law of thermodynamics in the form
A(mechanical energy of system and surroundings)

+ A(internal energy of system) -+ A(internal energy of
surroundings) = 0. This approach avoids explicit use of
work and heat terms, but also conceals the mechanisms
responsible for the energy transformations. In a similar
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vein Barrow'? has asserted that “There is no thermody-
namic role for the slippery terms ‘heat’ and ‘work.” We
should deal with energies and, in thermodynamics, with
the energies of the system and its thermal and mechanical
surroundings. Then all first-law energy calculations can be
done with a good accounting system... .”

Sherwood and Bernard'? proposed use of two forms of
the first law of thermodynamics—one frame dependent
and one frame invariant. In the frame-dependent version
the work is calculated using all external forces and the mo-
tions of their points of application and the system energy
includes bulk translational kinetic energy. In the frame-
invariant version the work is calculated using all external
forces and the motions of their points of application relative
to the system c.m. and the system energy does not include
bulk translational kinetic energy. (Note that this second
work is calculated in a frame that is not, in general, iner-
tial.) The difference between the two works turns out to be
precisely the pseudowork, which equals the change in bulk
translational kinetic energy.

The abundance of papers devoted to energy transforma-
tions and, in particular, work in macroscopic systems is
impressive and is indicative of the discomfort many physics
teachers experience in this area. It provides evidence that
further clarifications are needed. The “taxonomy of work”
presented in Secs. III-VI is intended to meet this need.

ITII. ASSUMPTIONS AND ELEMENTARY
DEFINITIONS

We consider a system of particles as shown in Fig. 1,
which may comprise either a rigid or deformable body, and
make the following assumptions.

Assumption 1: Our system consists of a collection of N

Origin

Fig. 1. Depiction of the N-element system on which work is done. Element
ihas mass m,, the system has total mass M, and the c.m. of the system has
position vectorr, ,, relative to the origin. The position vectors of element /
relative to the origin, to the c.m., and to element j, respectively, arer;, f;,
and ;. The force on element i by element j is F;; and the sum of all such
internal forces on element i is Fi™. The net external force on element i is
Fo*. Although this figure depicts a continuous collection of elements re-
sembling a rigid body, the mathematical development assumes neither
continuity nor rigidity.
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elements, each of which behaves as a point particle. The
significance of this assumption is twofold: First, since ac-
celeration is strictly well defined only for point particles,
only point particles can strictly obey Newton’s second law.
Second, point particles, by definition, are devoid of internal
structure and are incapable of possessing internal modes
that store energy.

Assumption 2: The interelement forces are conservative.
This enables us to define an interelement, internal potential
energy function for the system.

Assumption 3: A classical, nonrelativistic analysis is ade-
quate. This assumption justifies our use of the simple Gali-
lean transformation and allows us to declare that all forces
and time intervals are invariant with respect to changes of
reference frame.

For the sake of notational clarity and precision, we col-
lect here the definitions of elementary quantities that are
used throughout the paper.

The element / has mass m,. The position (i.e., displace-
ment from the origin) and velocity of element 7/ in a chosen
laboratory frame are denoted, respectively, by r; and
v, =dfr,/dt. Each element { experiences a net external force
F¢* due to its interactions with agents outside of the sys-
tem. In addition it experiences internal forces F; due to its
interactions with the other elements j#i in the system. The
net internal force on the ith element is

Fin= Z F;.
JFi
The net force on element / is F**'=F* 4 Fi™,

The total mass of the N-element system is M=Z2,m;,. The
position and velocity of its c.m. are denoted, respectively,
by

1 are. 1

Iem. EA—{Z m;r; and Vem. ET = ﬁzl: m;v;.
The net force on the system is the sum of the net external
and net internal forces; i.e.,

Ftot = ext + Fim EZ F?Xt + z F‘iim'
However, because

F,, = ZF}M= E;Fq = z Z (F; +F;) =0
i i i i j>i
by Newton’s third law, we have F,,, = F,,,.

The position and velocity of element i relative to the sys-
tem c.m. are denoted, respectively, by ¥, =r, —r_, and
¥,=drt,/dt = v, — v_,, - Finally, the position of the ith ele-
ment relative to the jth element is denoted by
f,=r,—1,=F —I;.

IV. WORK DEFINITIONS

We now consider a process in-which the system elements
interact with each other and/or the external environment
and change their positions relative to each other and/or the
laboratory frame. The laboratory frame is inertial but oth-
erwise arbitrarily chosen. The process is understood to take
place during a well-defined “interaction time period” 7
over which all integrals are carried out.

We begin with a definition of the fotal work done on the
system—the sum of the works done on each of its elements:
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W= S [ Fovadr, @)

Note that the total work will, in general, include nonzero
contributions from internal forces. We may consider the
work done by external and internal forces separately and
define, respectively, the external and internal works:

Wou= 3 [ Frdr, 3)

Wi = z f Fdr,. 4

Equations (2)—(4) define the three works, W,,,, W,
and W,,, which we characterize as “frame specific” (as
opposed to “frame dependent”—a term we reserve for
characterizing the transformation properties of various
quantities) because each involves integrals over the paths
of the system elements in the inertial laboratory reference
frame. (We shall see that although W,,, is frame specific, it
is not frame dependent.)

A fourth worklike quantity is the pseudowork:

WPS = Z J F:‘Ot.drc.mA = j Ftot 'drc.m. = f Fext .drc.mA *
(3)

W, is also “frame specific”’ because the motion of the c.m.
is relative to our chosen laboratory inertial reference frame.
(Some authors prefer to call W, “center-of-mass work,” a
name we avoid because of its potential for confusion with
the works defined in the next paragraph.)

We now define three quantities that are analogous to
Wos W and W, , but which involve displacements rel-
ative to a nonrotating frame traveling with the system c.m.
Note that this frame is, in general, not inertial. These “‘sys-
tem-specific” works are defined as follows:

W= f ) 0 (6)
Wey = z f F?xt'diis @))

V=3 f Fidi,. O ®

The seven works defined in Egs. (2)—(8) are not inde-
pendent. The following four relationships are readily
derived:

u’tot = Wext + mm) (9) °

Wee = Z f F:Xt'd(rc.m. + )

= J Fext 'drcAm. + 2 J- F?x‘.dfi

=W + Wy, (10)
=3 [P, +7)

= f Finl 'drom. + z J. Fiim'dfi

= Wine»

(11)

Wior = Wexy + Wi -

359 Am. J. Phys., Vol. 60, No. 4, April 1992

(12)

Using these four relationships all seven works can be ob-
tained, for instance, from a knowledge of W,,, W, and
W ... In the next section we show that these three works—
and, by extension, all the others—are directly related to
changes in distinctly different forms of system energy.

V. WORK-ENERGY RELATIONSHIPS

By definition, work is a function of a mechanical process.
However, we show here that each of the “works” defined
above can be related via a “work-energy relationship” to a
change in some purely state-dependent function that we
refer to as an “energy.” We first derive such relationships
for W, W, and W;,,.

Starting with Eq. (2) we find,

Wo= 3 [ Foar
= mei%-vi dt= Z%mij‘d(vf)
1
=A - 112)
(34

i

=AK,,. (13)

Here we use our assumption that system elements behave
as point particles that obey Newton’s second law and intro-
duce the definition,

AKtot EA( z % miv?) ’

(14)

for the change in the total kinetic energy of the system
during the interaction period. By expressing the velocity of
element / in terms of its velocity relative to the c.m.—i.e.,
by using the relationship v, = v, + ¥,—we find,

AKtot = A( Z % milvc.m. + 61'!2)

i

=a(3 3 mitn ) +a(g 5 m)

- A(z%mi[vgm + 97 + 2(vc.m.-%)])

+ A(Z m; (Yom *V; ))
g ool o)
+ A(vc_m} Z m,i,-)

= AK, + AK,, (15)

where we use the fact that 2,m, ¥, = 0 (by the definition of
c.m.) and introduce the definitions,

AKt,EA(%Mv&m.), (16)
AKimEA(Z%m,ﬁf). (17)

AK,, is the change in the bulk translational kinetic energy
of the system—the energy that the system possesses by vir-
tue of the motion of its ¢.m. relative to the observer. AK. . is

int
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