ERRATUM for Energy and Entropy: A Dynamic Duo (Ed. 1) | Where? | Correction | |-----------------------------------|--| | p. 51, Key Point 2.13 | The word "measurement" is incorrectly hyphenated. | | p. 76, line 6 | $d\zeta_1 - d\zeta_2$ should be $d\zeta_1 \neq -d\zeta_2$ | | p. 96, Eq. (4.1) | Right side should be $Nk\left[\frac{3}{2}\ln\left(\frac{E}{N}\right) + \ln\left(\frac{V}{N}\right) + s_o\right]$
It is straightforward to show that S = Nk[ln(dimensionless quantity) + 5/2]. | | p. 96, 2 lines below
Eq. (4.3) | Delete redundant word "at." | | p. 98, par. 2, line 7 | $ \psi(q) ^2 dx$ should be $ \psi(q) ^2 d^3q$ | | p. 102, Eq. (4.15) | Denominator should read $(\exp(\epsilon-\mu)/kT)$ | | p. 109, Eq. (4.26) | The term $C_v dT$ is missing in the equation's last line. Replace the words leading to Eq. (4.27) by: The internal energy can be found by integrating the corrected third line with respect to V along a path of constant T , giving $E(T,V) = -aN^2/V + \chi(T,a,b)$. The last term is a "constant" of integration along a path where T is constant. Equality of the mixed derivatives of $E(T,V)$, along with the T -independence of aN^2/V guarantee that C_V is independent of V . For $V \rightarrow \infty$, $C_V \rightarrow 3/2NkT$, so for all a , b and V , $\chi(T,a,b) = 3/2NkT = \chi(T)$ and Eq. (4.27) is verified. | | p. 110, par. 2 | Assuming spherically symmetric interparticle forces and potential energies for a homogeneous and isotropic fluid, the probability of finding a second molecule in a spherical shell of thickness dr at distance r from a given molecule is $g(r)dV=g(r)4\pir^2dr$. | | p. 140, last line | Delete "in" following T ₂ | | p. 157, par. 1 | Volume should be $V = 3 m \times 4 m \times 5 m = 60 m^3$ | | p. 296, before last paragraph. | Just as temperature is a measure of <i>hotness</i> , the Caratheodory development provides an interpretation of entropy as a measure of the adiabatic accessibility of states: State B is reversibly accessible from state A if $S_B = S_A$, is irreversibly accessible from A if $S_B > S_A$, and is inaccessible from A if $S_B < S_A$. (This insight was kindly provided to me by Prof. Chris Gray.) |